1
|
Yuan H, Hong C, Tran NTA, Xu X, Liu N. Leveraging anatomical constraints with uncertainty for pneumothorax segmentation. HEALTH CARE SCIENCE 2024; 3:456-474. [PMID: 39735285 PMCID: PMC11671217 DOI: 10.1002/hcs2.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 12/31/2024]
Abstract
Background Pneumothorax is a medical emergency caused by the abnormal accumulation of air in the pleural space-the potential space between the lungs and chest wall. On 2D chest radiographs, pneumothorax occurs within the thoracic cavity and outside of the mediastinum, and we refer to this area as "lung + space." While deep learning (DL) has increasingly been utilized to segment pneumothorax lesions in chest radiographs, many existing DL models employ an end-to-end approach. These models directly map chest radiographs to clinician-annotated lesion areas, often neglecting the vital domain knowledge that pneumothorax is inherently location-sensitive. Methods We propose a novel approach that incorporates the lung + space as a constraint during DL model training for pneumothorax segmentation on 2D chest radiographs. To circumvent the need for additional annotations and to prevent potential label leakage on the target task, our method utilizes external datasets and an auxiliary task of lung segmentation. This approach generates a specific constraint of lung + space for each chest radiograph. Furthermore, we have incorporated a discriminator to eliminate unreliable constraints caused by the domain shift between the auxiliary and target datasets. Results Our results demonstrated considerable improvements, with average performance gains of 4.6%, 3.6%, and 3.3% regarding intersection over union, dice similarity coefficient, and Hausdorff distance. These results were consistent across six baseline models built on three architectures (U-Net, LinkNet, or PSPNet) and two backbones (VGG-11 or MobileOne-S0). We further conducted an ablation study to evaluate the contribution of each component in the proposed method and undertook several robustness studies on hyper-parameter selection to validate the stability of our method. Conclusions The integration of domain knowledge in DL models for medical applications has often been underemphasized. Our research underscores the significance of incorporating medical domain knowledge about the location-specific nature of pneumothorax to enhance DL-based lesion segmentation and further bolster clinicians' trust in DL tools. Beyond pneumothorax, our approach is promising for other thoracic conditions that possess location-relevant characteristics.
Collapse
Affiliation(s)
- Han Yuan
- Centre for Quantitative Medicine, Duke‐NUS Medical SchoolSingapore
| | - Chuan Hong
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNorth CarolinaUSA
| | | | - Xinxing Xu
- Institute of High Performance Computing, Agency for Science, Technology and ResearchSingapore
| | - Nan Liu
- Centre for Quantitative Medicine, Duke‐NUS Medical SchoolSingapore
- Programme in Health Services and Systems Research, Duke‐NUS Medical SchoolSingapore
- Institute of Data ScienceNational University of SingaporeSingapore
| |
Collapse
|
2
|
Sun Y, Wang L, Gao K, Ying S, Lin W, Humphreys KL, Li G, Niu S, Liu M, Wang L. Self-supervised learning with application for infant cerebellum segmentation and analysis. Nat Commun 2023; 14:4717. [PMID: 37543620 PMCID: PMC10404262 DOI: 10.1038/s41467-023-40446-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Accurate tissue segmentation is critical to characterize early cerebellar development in the first two postnatal years. However, challenges in tissue segmentation arising from tightly-folded cortex, low and dynamic tissue contrast, and large inter-site data heterogeneity have limited our understanding of early cerebellar development. In this paper, we propose an accurate self-supervised learning framework for infant cerebellum segmentation. We validate its accuracy using 358 subjects from three datasets. Our results suggest the first six months exhibit the most rapid and dynamic changes, with gray matter (GM) playing a dominant role in cerebellar growth over white matter (WM). We also find both GM and WM volumes are larger in males than females, and GM and WM volumes are larger in autistic males than neurotypical males. Application of our method to a larger population will fuel more cerebellar studies, ultimately advancing our comprehension of its structure and function in neurotypical and disordered development.
Collapse
Affiliation(s)
- Yue Sun
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Limei Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Gao
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shihui Ying
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kathryn L Humphreys
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, 37203, USA
- Department of Psychiatric and Behavioral Sciences, School of Medicine, Tulane University, New Orleans, LA, 70118, USA
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sijie Niu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Miloglu O, Guller MT, Tosun ZT. The Use of Artificial Intelligence in Dentistry Practices. Eurasian J Med 2022; 54:34-42. [PMID: 36655443 PMCID: PMC11163356 DOI: 10.5152/eurasianjmed.2022.22301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 01/19/2023] Open
Abstract
Artificial intelligence can be defined as "understanding human thinking and trying to develop computer processes that will produce a similar structure." Thus, it is an attempt by a programmed computer to think. According to a broader definition, artificial intelligence is a computer equipped with human intelligencespecific capacities such as acquiring information, perceiving, seeing, thinking, and making decisions. Quality demands in dental treatments have constantly been increasing in recent years. In parallel with this, using image-based methods and multimedia-supported explanation systems on the computer is becoming widespread to evaluate the available information. The use of artificial intelligence in dentistry will greatly contribute to the reduction of treatment times and the effort spent by the dentist, reduce the need for a specialist dentist, and give a new perspective to how dentistry is practiced. In this review, we aim to review the studies conducted with artificial intelligence in dentistry and to inform our dentists about the existence of this new technology.
Collapse
Affiliation(s)
- Ozkan Miloglu
- Department of Oral, Dental and Maxillofacial Radiology, Atatürk University Faculty of Dentistry, Erzurum, Turkey
| | - Mustafa Taha Guller
- Department of Dentistry Services, Oral and Dental Health Program, Binali Yıldırım University Vocational School of Health Services, , Erzincan, Turkey
| | - Zeynep Turanli Tosun
- Department of Oral, Dental and Maxillofacial Radiology, Atatürk University Faculty of Dentistry, Erzurum, Turkey
| |
Collapse
|
4
|
Qiu B, van der Wel H, Kraeima J, Glas HH, Guo J, Borra RJH, Witjes MJH, van Ooijen PMA. Automatic Segmentation of Mandible from Conventional Methods to Deep Learning-A Review. J Pers Med 2021; 11:629. [PMID: 34357096 PMCID: PMC8307673 DOI: 10.3390/jpm11070629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/05/2023] Open
Abstract
Medical imaging techniques, such as (cone beam) computed tomography and magnetic resonance imaging, have proven to be a valuable component for oral and maxillofacial surgery (OMFS). Accurate segmentation of the mandible from head and neck (H&N) scans is an important step in order to build a personalized 3D digital mandible model for 3D printing and treatment planning of OMFS. Segmented mandible structures are used to effectively visualize the mandible volumes and to evaluate particular mandible properties quantitatively. However, mandible segmentation is always challenging for both clinicians and researchers, due to complex structures and higher attenuation materials, such as teeth (filling) or metal implants that easily lead to high noise and strong artifacts during scanning. Moreover, the size and shape of the mandible vary to a large extent between individuals. Therefore, mandible segmentation is a tedious and time-consuming task and requires adequate training to be performed properly. With the advancement of computer vision approaches, researchers have developed several algorithms to automatically segment the mandible during the last two decades. The objective of this review was to present the available fully (semi)automatic segmentation methods of the mandible published in different scientific articles. This review provides a vivid description of the scientific advancements to clinicians and researchers in this field to help develop novel automatic methods for clinical applications.
Collapse
Affiliation(s)
- Bingjiang Qiu
- 3D Lab, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (B.Q.); (H.v.d.W.); (J.K.); (H.H.G.); (M.J.H.W.)
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Data Science Center in Health (DASH), University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Hylke van der Wel
- 3D Lab, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (B.Q.); (H.v.d.W.); (J.K.); (H.H.G.); (M.J.H.W.)
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Joep Kraeima
- 3D Lab, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (B.Q.); (H.v.d.W.); (J.K.); (H.H.G.); (M.J.H.W.)
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Haye Hendrik Glas
- 3D Lab, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (B.Q.); (H.v.d.W.); (J.K.); (H.H.G.); (M.J.H.W.)
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jiapan Guo
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Data Science Center in Health (DASH), University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ronald J. H. Borra
- Medical Imaging Center (MIC), University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Max Johannes Hendrikus Witjes
- 3D Lab, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (B.Q.); (H.v.d.W.); (J.K.); (H.H.G.); (M.J.H.W.)
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Peter M. A. van Ooijen
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Data Science Center in Health (DASH), University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
5
|
Computed tomography data collection of the complete human mandible and valid clinical ground truth models. Sci Data 2019; 6:190003. [PMID: 30694227 PMCID: PMC6350631 DOI: 10.1038/sdata.2019.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/14/2018] [Indexed: 11/08/2022] Open
Abstract
Image-based algorithmic software segmentation is an increasingly important topic in many medical fields. Algorithmic segmentation is used for medical three-dimensional visualization, diagnosis or treatment support, especially in complex medical cases. However, accessible medical databases are limited, and valid medical ground truth databases for the evaluation of algorithms are rare and usually comprise only a few images. Inaccuracy or invalidity of medical ground truth data and image-based artefacts also limit the creation of such databases, which is especially relevant for CT data sets of the maxillomandibular complex. This contribution provides a unique and accessible data set of the complete mandible, including 20 valid ground truth segmentation models originating from 10 CT scans from clinical practice without artefacts or faulty slices. From each CT scan, two 3D ground truth models were created by clinical experts through independent manual slice-by-slice segmentation, and the models were statistically compared to prove their validity. These data could be used to conduct serial image studies of the human mandible, evaluating segmentation algorithms and developing adequate image tools.
Collapse
|
6
|
Wallner J, Hochegger K, Chen X, Mischak I, Reinbacher K, Pau M, Zrnc T, Schwenzer-Zimmerer K, Zemann W, Schmalstieg D, Egger J. Clinical evaluation of semi-automatic open-source algorithmic software segmentation of the mandibular bone: Practical feasibility and assessment of a new course of action. PLoS One 2018; 13:e0196378. [PMID: 29746490 PMCID: PMC5944980 DOI: 10.1371/journal.pone.0196378] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/12/2018] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Computer assisted technologies based on algorithmic software segmentation are an increasing topic of interest in complex surgical cases. However-due to functional instability, time consuming software processes, personnel resources or licensed-based financial costs many segmentation processes are often outsourced from clinical centers to third parties and the industry. Therefore, the aim of this trial was to assess the practical feasibility of an easy available, functional stable and licensed-free segmentation approach to be used in the clinical practice. MATERIAL AND METHODS In this retrospective, randomized, controlled trail the accuracy and accordance of the open-source based segmentation algorithm GrowCut was assessed through the comparison to the manually generated ground truth of the same anatomy using 10 CT lower jaw data-sets from the clinical routine. Assessment parameters were the segmentation time, the volume, the voxel number, the Dice Score and the Hausdorff distance. RESULTS Overall semi-automatic GrowCut segmentation times were about one minute. Mean Dice Score values of over 85% and Hausdorff Distances below 33.5 voxel could be achieved between the algorithmic GrowCut-based segmentations and the manual generated ground truth schemes. Statistical differences between the assessment parameters were not significant (p<0.05) and correlation coefficients were close to the value one (r > 0.94) for any of the comparison made between the two groups. DISCUSSION Complete functional stable and time saving segmentations with high accuracy and high positive correlation could be performed by the presented interactive open-source based approach. In the cranio-maxillofacial complex the used method could represent an algorithmic alternative for image-based segmentation in the clinical practice for e.g. surgical treatment planning or visualization of postoperative results and offers several advantages. Due to an open-source basis the used method could be further developed by other groups or specialists. Systematic comparisons to other segmentation approaches or with a greater data amount are areas of future works.
Collapse
Affiliation(s)
- Jürgen Wallner
- Department of Oral & Maxillofacial Surgery, Medical University of Graz, Auenbruggerplatz 5/1, Graz, Austria
- Computer Algorithms for Medicine (Cafe) Laboratory, Graz, Austria
| | - Kerstin Hochegger
- Computer Algorithms for Medicine (Cafe) Laboratory, Graz, Austria
- Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16c/II, Graz, Austria
| | - Xiaojun Chen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Irene Mischak
- Department of Dental Medicine and Oral Health, Medical University of Graz, Billrothgasse 4, Graz, Austria
| | - Knut Reinbacher
- Department of Oral & Maxillofacial Surgery, Medical University of Graz, Auenbruggerplatz 5/1, Graz, Austria
| | - Mauro Pau
- Department of Oral & Maxillofacial Surgery, Medical University of Graz, Auenbruggerplatz 5/1, Graz, Austria
| | - Tomislav Zrnc
- Department of Oral & Maxillofacial Surgery, Medical University of Graz, Auenbruggerplatz 5/1, Graz, Austria
| | - Katja Schwenzer-Zimmerer
- Department of Oral & Maxillofacial Surgery, Medical University of Graz, Auenbruggerplatz 5/1, Graz, Austria
| | - Wolfgang Zemann
- Department of Oral & Maxillofacial Surgery, Medical University of Graz, Auenbruggerplatz 5/1, Graz, Austria
| | - Dieter Schmalstieg
- Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16c/II, Graz, Austria
| | - Jan Egger
- Computer Algorithms for Medicine (Cafe) Laboratory, Graz, Austria
- Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16c/II, Graz, Austria
- BioTechMed-Graz, Krenngasse 37/1, Graz, Austria
| |
Collapse
|
7
|
Model-based segmentation in orbital volume measurement with cone beam computed tomography and evaluation against current concepts. Int J Comput Assist Radiol Surg 2015; 11:1-9. [DOI: 10.1007/s11548-015-1228-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
|
8
|
Wang L, Gao Y, Shi F, Li G, Gilmore JH, Lin W, Shen D. LINKS: learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images. Neuroimage 2014; 108:160-72. [PMID: 25541188 DOI: 10.1016/j.neuroimage.2014.12.042] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/28/2014] [Accepted: 12/01/2014] [Indexed: 01/21/2023] Open
Abstract
Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination processes. In the first year of life, the image contrast between white and gray matters of the infant brain undergoes dramatic changes. In particular, the image contrast is inverted around 6-8months of age, and the white and gray matter tissues are isointense in both T1- and T2-weighted MR images and thus exhibit the extremely low tissue contrast, which poses significant challenges for automated segmentation. Most previous studies used multi-atlas label fusion strategy, which has the limitation of equally treating the different available image modalities and is often computationally expensive. To cope with these limitations, in this paper, we propose a novel learning-based multi-source integration framework for segmentation of infant brain images. Specifically, we employ the random forest technique to effectively integrate features from multi-source images together for tissue segmentation. Here, the multi-source images include initially only the multi-modality (T1, T2 and FA) images and later also the iteratively estimated and refined tissue probability maps of gray matter, white matter, and cerebrospinal fluid. Experimental results on 119 infants show that the proposed method achieves better performance than other state-of-the-art automated segmentation methods. Further validation was performed on the MICCAI grand challenge and the proposed method was ranked top among all competing methods. Moreover, to alleviate the possible anatomical errors, our method can also be combined with an anatomically-constrained multi-atlas labeling approach for further improving the segmentation accuracy.
Collapse
Affiliation(s)
- Li Wang
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Yaozong Gao
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA
| | - Feng Shi
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Gang Li
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- MRI Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Dinggang Shen
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Abstract
The success of craniomaxillofacial (CMF) surgery depends not only on the surgical techniques, but also upon an accurate surgical planning. However, surgical planning for CMF surgery is challenging due to the absence of a patient-specific reference model. In this paper, we present a method to automatically estimate an anatomically correct reference shape of jaws for the patient requiring orthognathic surgery, a common type of CMF surgery. We employ the sparse representation technique to represent the normal regions of the patient with respect to the normal subjects. The estimated representation is then used to reconstruct a patient-specific reference model with "restored" normal anatomy of the jaws. We validate our method on both synthetic subjects and patients. Experimental results show that our method can effectively reconstruct the normal shape of jaw for patients. Also, a new quantitative measurement is introduced to quantify the CMF deformity and validate the method in a quantitative approach, which is rarely used before.
Collapse
|
10
|
Wang L, Chen KC, Gao Y, Shi F, Liao S, Li G, Shen SGF, Yan J, Lee PKM, Chow B, Liu NX, Xia JJ, Shen D. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization. Med Phys 2014; 41:043503. [PMID: 24694160 PMCID: PMC3971832 DOI: 10.1118/1.4868455] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/17/2014] [Accepted: 02/17/2014] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. METHODS To segment CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into a maximum a posteriori probability-based convex segmentation framework for accurate segmentation. RESULTS The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. CONCLUSIONS The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT segmentation based on 15 patients.
Collapse
Affiliation(s)
- Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Ken Chung Chen
- Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Stomatology, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan 70403
| | - Yaozong Gao
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Feng Shi
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Shu Liao
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Steve G F Shen
- Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011
| | - Jin Yan
- Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011
| | - Philip K M Lee
- Hong Kong Dental Implant and Maxillofacial Centre, Hong Kong, China 999077
| | - Ben Chow
- Hong Kong Dental Implant and Maxillofacial Centre, Hong Kong, China 999077
| | - Nancy X Liu
- Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China 100050
| | - James J Xia
- Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030; Department of Surgery (Oral and Maxillofacial Surgery), Weill Medical College, Cornell University, New York, New York 10065; and Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea 136701
| |
Collapse
|