1
|
Injectable calcium phosphate and styrene–butadiene polymer-based root canal filling material. ASIAN BIOMED 2021. [DOI: 10.2478/abm-2021-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background
Three-dimensional obturation of the root canal system is mandatory for a successful root canal treatment. Using a filling material with optimal properties may enable the root canal to be sealed well and therefore obtain the desired obturation.
Objective
To develop a new injectable paste endodontic filling material using calcium phosphate powder and a styrene–butadiene emulsion polymer.
Methods
The powder phase comprised an equivalent molar ratio of tetracalcium phosphate, anhydrous dicalcium phosphate, bismuth oxide, and calcium chloride. The liquid phase comprised a styrene–butadiene rubber emulsion in distilled water. The powder and the liquid were mixed to achieve a paste consistency. The paste was subjected to various tests including flow, setting time, dimensional change, solubility, and radiopacity to indicate its suitability as a root canal filling material. All these tests were conducted according to the American National Standards Institute–American Dental Association for endodontic sealing materials. After passing these tests, the paste was submitted to an injectability test.
Results
The material showed acceptable flowability with 19.1 ± 1.3 min setting time and 0.61 ± 0.16% shrinkage after 30 days of storage. We found the highest solubility at 24 h (6.62 ± 0.58%), then the solubility decreased to 1.09 ± 0.08% within 3 days. The material was more radiopaque than a 3 mm step on an aluminum wedge. Furthermore, the material showed good injectability of 93.67 ± 1.80%.
Conclusions
The calcium phosphate powder in styrene–butadiene emulsion met basic requirements for a root canal filling material with promising properties.
Collapse
|
2
|
Kaka HB, Salman RF. Injectable calcium phosphate and styrene-butadiene polymer-based root canal filling material. ASIAN BIOMED 2021; 15:19-26. [PMID: 37551301 PMCID: PMC10388755 DOI: 10.1515/abm-2021-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Background Three-dimensional obturation of the root canal system is mandatory for a successful root canal treatment. Using a filling material with optimal properties may enable the root canal to be sealed well and therefore obtain the desired obturation. Objective To develop a new injectable paste endodontic filling material using calcium phosphate powder and a styrene-butadiene emulsion polymer. Methods The powder phase comprised an equivalent molar ratio of tetracalcium phosphate, anhydrous dicalcium phosphate, bismuth oxide, and calcium chloride. The liquid phase comprised a styrene-butadiene rubber emulsion in distilled water. The powder and the liquid were mixed to achieve a paste consistency. The paste was subjected to various tests including flow, setting time, dimensional change, solubility, and radiopacity to indicate its suitability as a root canal filling material. All these tests were conducted according to the American National Standards Institute-American Dental Association for endodontic sealing materials. After passing these tests, the paste was submitted to an injectability test. Results The material showed acceptable flowability with 19.1 ± 1.3 min setting time and 0.61 ± 0.16% shrinkage after 30 days of storage. We found the highest solubility at 24 h (6.62 ± 0.58%), then the solubility decreased to 1.09 ± 0.08% within 3 days. The material was more radiopaque than a 3 mm step on an aluminum wedge. Furthermore, the material showed good injectability of 93.67 ± 1.80%. Conclusions The calcium phosphate powder in styrene-butadiene emulsion met basic requirements for a root canal filling material with promising properties.
Collapse
Affiliation(s)
- Hala B. Kaka
- Department of Conservative Dentistry, College of Dentistry, Hawler Medical University, Erbil44001, Iraq
| | - Raid F. Salman
- Department of Conservative Dentistry, Endodontics, College of Dentistry, Hawler Medical University, Erbil44001, Iraq
| |
Collapse
|
3
|
Ghaffari S, Solati-Hashjin M, Zabihi-Neyshabouri E, Rabiee SM. Novel calcium phosphate coated calcium silicate-based cement: in vitro evaluation. ACTA ACUST UNITED AC 2020; 15:035008. [PMID: 31935700 DOI: 10.1088/1748-605x/ab6b30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Calcium silicate-based cements are known for their wide applications in dentistry and orthopedics. The alkaline pH (up to 12) of these cements limits their application in other orthopedic areas. In this study, the effect of dicalcium phosphate dihydrate (DCPD) coating on set cement on pH reduction and biocompatibility improvement was examined. Samples with 0 and 10 weight ratio DCPD were prepared and characterized by XRD, FTIR, and SEM. The DCPD coating on the set cement was performed by a 7 d immersion in 1% monocalcium phosphate (MCP) solution and characterized by XRD, FTIR, SEM, and EDX. Also, the compressive strength and cytotoxicity of the samples were tested. The results showed that DCPD coating did not significantly change the compressive strength of the cement, but by decreasing the pH of the culture medium to the physiological range, it led to enhance adhesion, spreading and proliferation of human osteosarcoma cell line (Saos-2). The novel DCPD coated calcium silicate-based cement could be served as a bulk or porous bone substitute and scaffold.
Collapse
Affiliation(s)
- Somayeh Ghaffari
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | | | | | |
Collapse
|
4
|
Wu T, Yang S, Lu T, He F, Zhang J, Shi H, Lin Z, Ye J. Strontium ranelate simultaneously improves the radiopacity and osteogenesis of calcium phosphate cement. ACTA ACUST UNITED AC 2019; 14:035005. [PMID: 30731438 DOI: 10.1088/1748-605x/ab052d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In a minimally invasive surgery of osteoporotic fractures, high radiopacity is necessary to monitor the delivery and positioning of injectable cements and good osteogenesis is indispensable. In this work, strontium ranelate (SrR), an agent for treating osteoporosis, is firstly used as a radiopaque agent for calcium phosphate cement (CPC). The addition of SrR does not affect the hydration products of CPC, but prolonged the setting time and decreased the compressive strength. The injectability of the cement was higher than 85% when SrR content is more than 10 wt%. The radiopacity of CPC is significantly improved by SrR and higher than cortical bone when the content of SrR is more than 5 wt%. The concentration of Sr ions released from CPC is increased by the increasing content of SrR, which is among 17-1329 μM. Moreover, CPCs with SrR significantly promote the osteogenic differentiation of mouse bone marrow mesenchymal stem cells and inhibit the osteoclastogenic differentiation of RAW264.7 cells. Based on its good radiopacity and osteogenesis, suppressed osteoclastogenesis and appropriate physicochemical properties, the radiopaque CPC with more than 10 wt% SrR is prospective to be a promising biomaterial for osteoporotic fracture repairing in minimal invasive surgery.
Collapse
Affiliation(s)
- Tingting Wu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China. Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Eddy, Tsuchiya A, Tsuru K, Ishikawa K. Fabrication of self-setting β-TCP granular cement using β-TCP granules and sodium hydrogen sulfate solution. J Biomater Appl 2018; 33:630-636. [PMID: 30376757 DOI: 10.1177/0885328218808015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bridging beta-tricalcium phosphate (β-TCP) granules with dicalcium phosphate dihydrate (DCPD) creates a porous, interconnected β-TCP granular cement (GC) that is useful for reconstructing bone defects: the interconnected pores can accelerate new bone ingrowth and the set cement prevents the loss of granules from the bone defect area. However, the setting time of β-TCP GC in an acidic calcium phosphate solution is too short (<1 min) for handling in clinical applications, such as in orthopedic surgery. To address this issue, we sought to optimize the setting time of β-TCP GC using β-TCP granules and NaHSO4 solution, as [Formula: see text] is a known inhibitor of DCPD formation. Both DCPD and calcium sulfate dihydrate (CSD) precipitated on the surface of β-TCP granules and bridged β-TCP granules to one another. Increasing NaHSO4 concentration (from 0.5 mol/L to 5 mol/L) led to an increase in the amount of precipitant from 2.6 ± 0.2% to 21.6 ± 1.3% for DCPD and 1.3 ± 0.3% to 10.1 ± 0.5% for CSD. The diametral tensile strength was also increased from 0.03 ± 0.01 MPa to 2.0 ± 0.1 MPa with increasing NaHSO4 concentration. When 2 mol/L NaHSO4 solution was used as the liquid phase, setting time became 5.3 ± 0.2 min, which is suitable for handling in clinical applications to repair bone defects. In conclusion, β-TCP GC using NaHSO4 solution as the liquid phase has good potential value as bone augmentation cement.
Collapse
Affiliation(s)
- Eddy
- 1 Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akira Tsuchiya
- 1 Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Kunio Ishikawa
- 1 Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Ishikawa K, Arifta TI, Hayashi K, Tsuru K. Fabrication and evaluation of interconnected porous carbonate apatite from alpha tricalcium phosphate spheres. J Biomed Mater Res B Appl Biomater 2018; 107:269-277. [DOI: 10.1002/jbm.b.34117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science; Kyushu University, 3-1-1 Maidashi; Higashi-ku Fukuoka 812-8582 Japan
| | - Tya Indah Arifta
- Department of Biomaterials, Faculty of Dental Science; Kyushu University, 3-1-1 Maidashi; Higashi-ku Fukuoka 812-8582 Japan
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science; Kyushu University, 3-1-1 Maidashi; Higashi-ku Fukuoka 812-8582 Japan
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Science; Kyushu University, 3-1-1 Maidashi; Higashi-ku Fukuoka 812-8582 Japan
| |
Collapse
|
7
|
Sa Y, Yang F, Wang Y, Wolke JGC, Jansen JA. Modifications of Poly(Methyl Methacrylate) Cement for Application in Orthopedic Surgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:119-134. [DOI: 10.1007/978-981-13-0950-2_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Xu HHK, Wang P, Wang L, Bao C, Chen Q, Weir MD, Chow LC, Zhao L, Zhou X, Reynolds MA. Calcium phosphate cements for bone engineering and their biological properties. Bone Res 2017; 5:17056. [PMID: 29354304 PMCID: PMC5764120 DOI: 10.1038/boneres.2017.56] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/13/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023] Open
Abstract
Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. Much effort has been made to enhance the biological performance of CPCs, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability, bioactivity, and interactions with cells. This review article focuses on the major recent developments in CPCs, including 3D printing, injectability, stem cell delivery, growth factor and drug delivery, and pre-vascularization of CPC scaffolds via co-culture and tri-culture techniques to enhance angiogenesis and osteogenesis.
Collapse
Affiliation(s)
- Hockin HK Xu
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- Center for Stem Cell Biology and Regenerative
Medicine, University of Maryland School of Medicine, Baltimore,
MD
21201, USA
- University of Maryland Marlene and Stewart
Greenebaum Cancer Center, University of Maryland School of Medicine,
Baltimore, MD
21201, USA
- Mechanical Engineering Department, University
of Maryland Baltimore County, Baltimore, MD
21250, USA
| | - Ping Wang
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Lin Wang
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- VIP Integrated Department, Stomatological
Hospital of Jilin University, Changchun, Jilin
130011, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Michael D Weir
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
| | - Laurence C Chow
- Volpe Research Center, American Dental
Association Foundation, National Institute of Standards & Technology,
Gaithersburg, MD
20899, USA
| | - Liang Zhao
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- Department of Orthopaedic Surgery, Nanfang
Hospital, Southern Medical University, Guangzhou,
Guangdong
510515, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Mark A Reynolds
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
| |
Collapse
|
9
|
Fukuda N, Tsuru K, Mori Y, Ishikawa K. Fabrication of self-setting β-tricalcium phosphate granular cement. J Biomed Mater Res B Appl Biomater 2017; 106:800-807. [PMID: 28370963 DOI: 10.1002/jbm.b.33891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 03/13/2017] [Accepted: 03/18/2017] [Indexed: 11/07/2022]
Abstract
Bone defect reconstruction would be greatly improved if β-tricalcium phosphate (β-TCP) granules had the ability to self-set without sacrificing their osteoconductivity potential. This study aimed to identify a method to permit β-TCP self-setting whilst maintaining good osteoconductivity. When mixed with acidic calcium phosphate solution, β-TCP granules were found to readily set, forming a fully interconnected porous structure. On mixing, dicalcium phosphate dihydrate crystals formed on the surface of β-TCP granules, bridging the granules and resulting in the setting reaction. The setting time of the β-TCP granular cement (β-TCP GC) was approximately 1 min and its mechanical strength, in terms of diametral tensile strength, was approximately 0.8 MPa. The β-TCP GC and β-TCP granules both showed the same level of osteoconductivity within rat calvaria bone defects. At 2 and 4 weeks post-implantation, new bone formation was comparable between the two β-TCP based bone substitutes. We conclude that β-TCP GC has excellent potential for use as a cement in bone defect reconstruction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 800-807, 2018.
Collapse
Affiliation(s)
- Naoyuki Fukuda
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.,Division of Maxillofacial Diagnostic and Surgical Sciences, Section of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihide Mori
- Division of Maxillofacial Diagnostic and Surgical Sciences, Section of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
10
|
Shariff KA, Tsuru K, Ishikawa K. Fabrication of interconnected pore forming α-tricalcium phosphate foam granules cement. J Biomater Appl 2015; 30:838-45. [PMID: 26329353 DOI: 10.1177/0885328215601939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Interconnected pore forming calcium phosphate cement is useful for the reconstruction of bone defects as well as scaffold fabrication in tissue engineering. In this study, interconnected pore forming calcium phosphate cement was fabricated using α-tricalcium phosphate (α-TCP) foam granules. When α-TCP foam granules were mixed with acidic calcium phosphate solution prepared from monocalcium phosphate monohydrate (MCPM) and phosphoric acid solution, brushite crystals were precipitated. These crystals bridged the α-TCP foam granules immediately upon mixing. As a result of the brushite bridge between the α-TCP foam granules, fully interconnected macroporous α-TCP was obtained. The amount of brushite precipitate and the mechanical strength of the set cement increased with acidic calcium phosphate concentration.
Collapse
Affiliation(s)
- Khairul Anuar Shariff
- Faculty of Dental Science, Department of Biomaterials, Kyushu University, Fukuoka, Japan
| | - Kanji Tsuru
- Faculty of Dental Science, Department of Biomaterials, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Faculty of Dental Science, Department of Biomaterials, Kyushu University, Fukuoka, Japan
| |
Collapse
|