1
|
Wei M, Yan X, Xin X, Chen H, Hou L, Zhang J. Hepatocyte-Specific Smad4 Deficiency Alleviates Liver Fibrosis via the p38/p65 Pathway. Int J Mol Sci 2022; 23:ijms231911696. [PMID: 36232998 PMCID: PMC9570188 DOI: 10.3390/ijms231911696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022] Open
Abstract
Liver fibrosis is a wound-healing response caused by the abnormal accumulation of extracellular matrix, which is produced by activated hepatic stellate cells (HSCs). Most studies have focused on the activated HSCs themselves in liver fibrosis, and whether hepatocytes can modulate the process of fibrosis is still unclear. Sma mothers against decapentaplegic homologue 4 (Smad4) is a key intracellular transcription mediator of transforming growth factor-β (TGF-β) during the development and progression of liver fibrosis. However, the role of hepatocyte Smad4 in the development of fibrosis is poorly elucidated. Here, to explore the functional role of hepatocyte Smad4 and the molecular mechanism in liver fibrosis, a CCl4-induced liver fibrosis model was established in mice with hepatocyte-specific Smad4 deletion (Smad4Δhep). We found that hepatocyte-specific Smad4 deficiency reduced liver inflammation and fibrosis, alleviated epithelial-mesenchymal transition, and inhibited hepatocyte proliferation and migration. Molecularly, Smad4 deletion in hepatocytes suppressed the expression of inhibitor of differentiation 1 (ID1) and the secretion of connective tissue growth factor (CTGF) of hepatocytes, which subsequently activated the p38 and p65 signaling pathways of HSCs in an epidermal growth factor receptor-dependent manner. Taken together, our results clearly demonstrate that the Smad4 expression in hepatocytes plays an important role in promoting liver fibrosis and could therefore be a promising target for future anti-fibrotic therapy.
Collapse
Affiliation(s)
- Miaomiao Wei
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Xin Xin
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Haiqiang Chen
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Lingling Hou
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
2
|
Kenda M, Avsec D, Zore T, Kogovšek E, Pečar Fonović U, Kos J, Bozovičar K, Bratkovič T, Karas Kuželički N, Žegura B, Filipič M, Sollner Dolenc M. Effects of tyrosine kinase inhibitors on androgen, estrogen α, glucocorticoid and thyroid receptors. Toxicol Appl Pharmacol 2022; 434:115818. [PMID: 34890638 DOI: 10.1016/j.taap.2021.115818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022]
Abstract
Modern anticancer therapies favor a targeted approach. Tyrosine kinase inhibitors (TKIs) are drugs that target molecular pathways involved in various types of malignancies. Although TKIs are safe and well tolerated, they remain not completely selective; e.g., endocrine-mediated adverse events have been observed with their use. In the present study, the effects of seven TKIs were determined on the activities of androgen receptor, estrogen receptor α (ERα), glucocorticoid receptor and thyroid receptor in vitro using stably transfected cell lines expressing firefly luciferase reporter gene: AR-EcoScreen, hERα-HeLa9903, MDA-kb2, and GH3.TRE-Luc cells, respectively. Antiandrogenic activity was seen for erlotinib, estrogenic activity for imatinib, antiestrogenic activity for dasatinib, erlotinib, nilotinib, regorafenib and sorafenib, glucocorticoid activity for erlotinib and ibrutinib, antiglucocorticoid activity for regorafenib and sorafenib, and antithyroid activity for ibrutinib. Additionally, synergism was seen for 1-5 μM dasatinib and 500 nM hydrocortisone combination for glucocorticoid activity in MDA-kb2 cells. The estrogenic activity of imatinib was confirmed as mediated through ERα, and interference of the TKIs with the reporter gene assays was ruled out in a cell-lysate-based firefly luciferase enzyme inhibition assay. Imatinib in combination with 4-hydroxytamoxifen showed concentration-dependent effects on the metabolic activity of ERα-expressing AN3CA, MCF-7, and SKOV3 cells, and on cell proliferation and adhesion of MCF-7 cells. These findings contribute to the understanding of the endocrine effects of TKIs, in terms of toxicity and effectiveness, and define the need to further evaluate the endocrine disrupting activities of TKIs to safeguard human and environmental health.
Collapse
Affiliation(s)
- Maša Kenda
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Damjan Avsec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Taja Zore
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Eva Kogovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Urša Pečar Fonović
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Janko Kos
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Krištof Bozovičar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | | | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Metka Filipič
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Marija Sollner Dolenc
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Ikarashi N, Kaneko M, Watanabe T, Kon R, Yoshino M, Yokoyama T, Tanaka R, Takayama N, Sakai H, Kamei J. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Erlotinib Induces Dry Skin via Decreased in Aquaporin-3 Expression. Biomolecules 2020; 10:biom10040545. [PMID: 32260143 PMCID: PMC7225942 DOI: 10.3390/biom10040545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022] Open
Abstract
An adverse reaction of dry skin occurs frequently during treatment with anticancer epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). In this study, we conducted basic research to clarify the mechanism of EGFR-TKI-induced dry skin and propose new treatments or preventative measures. Dermal water content was significantly lower in the erlotinib-treated mice than in the control group. An assessment of the expression levels of functional genes in the skin revealed that only the expression of the water channel aquaporin-3 (AQP3) was significantly decreased in the erlotinib-treated group. When erlotinib was added to epidermal keratinocyte HaCaT cells, the expression levels of both AQP3 mRNA and protein decreased. Erlotinib treatment also significantly decreased the expression levels of phospho-EGFR and phospho-extracellular signal-regulated kinase (ERK), both in HaCaT cells and mouse skin. Dry skin due to erlotinib may be caused by the decreased expression of AQP3 in the skin, thereby limiting water transport from the vascular side to the corneum side. The decrease in AQP3 may also be attributable to ERK suppression via inhibition of EGFR activity by erlotinib. Therefore, substances that increase AQP3 expression may be effective for erlotinib-induced dry skin.
Collapse
|
4
|
Salama MF, Liu M, Clarke CJ, Espaillat MP, Haley JD, Jin T, Wang D, Obeid LM, Hannun YA. PKCα is required for Akt-mTORC1 activation in non-small cell lung carcinoma (NSCLC) with EGFR mutation. Oncogene 2019; 38:7311-7328. [PMID: 31420605 PMCID: PMC6883150 DOI: 10.1038/s41388-019-0950-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/29/2022]
Abstract
Mutational activation of the epidermal growth factor receptor (EGFR) is a major player in the pathogenesis of non-small cell lung cancer (NSCLC). NSCLC patients with constitutively active EGFR mutations eventually develop drug resistance against EGFR tyrosine-kinase inhibitors; therefore, better understandings of key components of mutant EGFR (mtEGFR) signaling are required. Here, we initially observed aberrantly high expression of protein kinase Cα (PKCα) in lung adenocarcinomas, especially those with EGFR mutations, and proceeded to examine the role of PKCα in the regulation of the signaling pathways downstream of mtEGFR. The results showed that NSCLC cell lines with constitutively active EGFR mutations tend to have very or moderately high PKCα levels. Furthermore, PKCα was constitutively activated in HCC827 and H4006 cells which have an EGFR deletion mutation in exon 19. Interestingly, mtEGFR was not required for the induction of PKCα at protein and message levels suggesting that the increased levels of PKCα are due to independent selection. On the other hand, mtEGFR activity was required for robust activation of PKCα. Loss of functions studies revealed that the NSCLC cells rely heavily on PKCα for the activation of the mTORC1 signaling pathway. Unexpectedly, the results demonstrated that PKCα was required for activation of Akt upstream of mTOR but only in cells with the mtEGFR and with the increased expression of PKCα. Functionally, inhibition of PKCα in HCC827 led to caspase-3-dependent apoptosis and a significant decrease in cell survival in response to cellular stress induced by serum starvation. In summary, the results identified important roles of PKCα in regulating mTORC1 activity in lung cancer cells, whereby a primary switching occurs from PKCα-independent to PKCα-dependent signaling in the presence of EGFR mutations. The results present PKCα as a potential synergistic target of personalized treatment for NSCLC with constitutively active mutant forms of EGFR and constitutively active PKCα.
Collapse
Affiliation(s)
- Mohamed F Salama
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY, 11794, USA
- Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mengling Liu
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY, 11794, USA
- Department of Immuno-Oncology, HD Biosciences Inc, San Diego, CA, 92121, USA
| | - Christopher J Clarke
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY, 11794, USA
| | - Mel Pilar Espaillat
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY, 11794, USA
| | - John D Haley
- Departments of Biochemistry and Pathology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Ting Jin
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Daifeng Wang
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Biostatistics and Medical Informatics and Waisman Center, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY, 11794, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY, 11794, USA.
- Departments of Biochemistry and Pathology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
5
|
Prenner S, Kulik L. Hepatocellular Carcinoma. ZAKIM AND BOYER'S HEPATOLOGY 2018:668-692.e9. [DOI: 10.1016/b978-0-323-37591-7.00046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Ozturk N, Ozturk D, Kavakli IH, Okyar A. Molecular Aspects of Circadian Pharmacology and Relevance for Cancer Chronotherapy. Int J Mol Sci 2017; 18:E2168. [PMID: 29039812 PMCID: PMC5666849 DOI: 10.3390/ijms18102168] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 02/01/2023] Open
Abstract
The circadian timing system (CTS) controls various biological functions in mammals including xenobiotic metabolism and detoxification, immune functions, cell cycle events, apoptosis and angiogenesis. Although the importance of the CTS is well known in the pharmacology of drugs, it is less appreciated at the clinical level. Genome-wide studies highlighted that the majority of drug target genes are controlled by CTS. This suggests that chronotherapeutic approaches should be taken for many drugs to enhance their effectiveness. Currently chronotherapeutic approaches are successfully applied in the treatment of different types of cancers. The chronotherapy approach has improved the tolerability and antitumor efficacy of anticancer drugs both in experimental animals and in cancer patients. Thus, chronobiological studies have been of importance in determining the most appropriate time of administration of anticancer agents to minimize their side effects or toxicity and enhance treatment efficacy, so as to optimize the therapeutic ratio. This review focuses on the underlying mechanisms of the circadian pharmacology i.e., chronopharmacokinetics and chronopharmacodynamics of anticancer agents with the molecular aspects, and provides an overview of chronotherapy in cancer and some of the recent advances in the development of chronopharmaceutics.
Collapse
Affiliation(s)
- Narin Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116 Beyazit-Istanbul, Turkey.
| | - Dilek Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116 Beyazit-Istanbul, Turkey.
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, TR-34093 Fatih-Istanbul, Turkey.
| | - Ibrahim Halil Kavakli
- Departments of Molecular Biology and Genetics and Chemical and Biological Engineering, Koc University, TR-34450 Sariyer-Istanbul, Turkey.
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116 Beyazit-Istanbul, Turkey.
| |
Collapse
|
7
|
CANcer-specific Evaluation System (CANES): a high-accuracy platform, for preclinical single/multi-biomarker discovery. Oncotarget 2017; 8:69808-69822. [PMID: 29050243 PMCID: PMC5642518 DOI: 10.18632/oncotarget.19270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 05/22/2017] [Indexed: 11/26/2022] Open
Abstract
The recent creation of enormous, cancer-related “Big Data” public depositories represents a powerful means for understanding tumorigenesis. However, a consistently accurate system for clinically evaluating single/multi-biomarkers remains lacking, and it has been asserted that oft-failed clinical advancement of biomarkers occurs within the very early stages of biomarker assessment. To address these challenges, we developed a clinically testable, web-based tool, CANcer-specific single/multi-biomarker Evaluation System (CANES), to evaluate biomarker effectiveness, across 2,134 whole transcriptome datasets, from 94,147 biological samples (from 18 tumor types). For user-provided single/multi-biomarkers, CANES evaluates the performance of single/multi-biomarker candidates, based on four classification methods, support vector machine, random forest, neural networks, and classification and regression trees. In addition, CANES offers several advantages over earlier analysis tools, including: 1) survival analysis; 2) evaluation of mature miRNAs as markers for user-defined diagnostic or prognostic purposes; and 3) provision of a “pan-cancer” summary view, based on each single marker. We believe that such “landscape” evaluation of single/multi-biomarkers, for diagnostic therapeutic/prognostic decision-making, will be highly valuable for the discovery and “repurposing” of existing biomarkers (and their specific targeted therapies), leading to improved patient therapeutic stratification, a key component of targeted therapy success for the avoidance of therapy resistance.
Collapse
|
8
|
Liu ZF, Jin JW, Wang GL, Dong MJ, Zhang Q, Zhao K, Yang SY. Simple column purification technique for the fully automated radiosynthesis of 2-[18F] fluorine-N-(3-bromophenyl)-6,7-dimethoxyquinazoline-4-amine [2-18F-PD153035]. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-015-4165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Koršić M, Muršić D, Badovinac S, Božina N, Roglić M, Jakopović M, Čučević B. Erlotinib-related rhabdomyolysis: the role of pharmacogenetics and drug–drug interaction. Cancer Chemother Pharmacol 2015; 76:1317-9. [DOI: 10.1007/s00280-015-2885-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
|
10
|
Abera MB, Kazanietz MG. Protein kinase Cα mediates erlotinib resistance in lung cancer cells. Mol Pharmacol 2015; 87:832-41. [PMID: 25724832 PMCID: PMC4407729 DOI: 10.1124/mol.115.097725] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/27/2015] [Indexed: 12/25/2022] Open
Abstract
Overexpression and mutational activation of the epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of non-small cell lung cancer (NSCLC). EGFR tyrosine-kinase inhibitors (TKIs) are given as a primary therapy for advanced patients with EGFR-activating mutations; however, the majority of these tumors relapse and patients eventually develop resistance to TKIs. To address a potential role of protein kinase C (PKC) isozymes in the resistance to TKIs, we used the isogenic NSCLC H1650 cell line and its erlotinib-resistant derivative H1650-M3, a cell line that displays a mesenchymal-like morphology driven by transforming growth factor-β signaling. We found that H1650-M3 cells display remarkable PKCα upregulation and PKCδ downregulation. Notably, silencing PKCα from H1650-M3 cells using RNA interference caused a significant reduction in the expression of epithelial-to-mesenchymal transition (EMT) markers vimentin, Zeb2, Snail, and Twist. Moreover, pharmacological inhibition or PKCα RNA interference depletion and PKCδ restoring sensitized H1650-M3 cells to erlotinib. Whereas ectopic overexpression of PKCα in parental H1650 cells was not sufficient to alter the expression of EMT genes or to confer resistance to erlotinib, it caused downregulation of PKCδ expression, suggesting a unidirectional crosstalk. Finally, mechanistic studies revealed that PKCα upregulation in H1650-M3 cells is driven by transforming growth factor-β. Our results identified important roles for specific PKC isozymes in erlotinib resistance and EMT in lung cancer cells, and highlight PKCα as a potential target for lung cancer treatment.
Collapse
Affiliation(s)
- Mahlet B Abera
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Takayanagi T, Kawai T, Forrester SJ, Obama T, Tsuji T, Fukuda Y, Elliott KJ, Tilley DG, Davisson RL, Park JY, Eguchi S. Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin II. Hypertension 2015; 65:1349-55. [PMID: 25916723 DOI: 10.1161/hypertensionaha.115.05344] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/01/2015] [Indexed: 12/18/2022]
Abstract
The mechanisms by which angiotensin II (AngII) elevates blood pressure and enhances end-organ damage seem to be distinct. However, the signal transduction cascade by which AngII specifically mediates vascular remodeling such as medial hypertrophy and perivascular fibrosis remains incomplete. We have previously shown that AngII-induced epidermal growth factor receptor (EGFR) transactivation is mediated by disintegrin and metalloproteinase domain 17 (ADAM17), and that this signaling is required for vascular smooth muscle cell hypertrophy but not for contractile signaling in response to AngII. Recent studies have implicated endoplasmic reticulum (ER) stress in hypertension. Interestingly, EGFR is capable of inducing ER stress. The aim of this study was to test the hypothesis that activation of EGFR and ER stress are critical components required for vascular remodeling but not hypertension induced by AngII. Mice were infused with AngII for 2 weeks with or without treatment of EGFR inhibitor, erlotinib, or ER chaperone, 4-phenylbutyrate. AngII infusion induced vascular medial hypertrophy in the heart, kidney and aorta, and perivascular fibrosis in heart and kidney, cardiac hypertrophy, and hypertension. Treatment with erlotinib as well as 4-phenylbutyrate attenuated vascular remodeling and cardiac hypertrophy but not hypertension. In addition, AngII infusion enhanced ADAM17 expression, EGFR activation, and ER/oxidative stress in the vasculature, which were diminished in both erlotinib-treated and 4-phenylbutyrate-treated mice. ADAM17 induction and EGFR activation by AngII in vascular cells were also prevented by inhibition of EGFR or ER stress. In conclusion, AngII induces vascular remodeling by EGFR activation and ER stress via a signaling mechanism involving ADAM17 induction independent of hypertension.
Collapse
Affiliation(s)
- Takehiko Takayanagi
- From the Department of Physiology, Cardiovascular Research Center (T. Takayanagi, T.K., S.J.F., T.O., T. Tsuji, Y.F., K.J.E., J.-Y.P., S.E.) and Department of Pharmacology, Center for Translational Medicine (D.G.T.), Temple University School of Medicine, Philadelphia, PA; Department of Kinesiology, Temple University College of Public Health, Philadelphia, PA (S.J.F., J.-Y.P.); and Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY (R.L.D.)
| | - Tatsuo Kawai
- From the Department of Physiology, Cardiovascular Research Center (T. Takayanagi, T.K., S.J.F., T.O., T. Tsuji, Y.F., K.J.E., J.-Y.P., S.E.) and Department of Pharmacology, Center for Translational Medicine (D.G.T.), Temple University School of Medicine, Philadelphia, PA; Department of Kinesiology, Temple University College of Public Health, Philadelphia, PA (S.J.F., J.-Y.P.); and Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY (R.L.D.)
| | - Steven J Forrester
- From the Department of Physiology, Cardiovascular Research Center (T. Takayanagi, T.K., S.J.F., T.O., T. Tsuji, Y.F., K.J.E., J.-Y.P., S.E.) and Department of Pharmacology, Center for Translational Medicine (D.G.T.), Temple University School of Medicine, Philadelphia, PA; Department of Kinesiology, Temple University College of Public Health, Philadelphia, PA (S.J.F., J.-Y.P.); and Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY (R.L.D.)
| | - Takashi Obama
- From the Department of Physiology, Cardiovascular Research Center (T. Takayanagi, T.K., S.J.F., T.O., T. Tsuji, Y.F., K.J.E., J.-Y.P., S.E.) and Department of Pharmacology, Center for Translational Medicine (D.G.T.), Temple University School of Medicine, Philadelphia, PA; Department of Kinesiology, Temple University College of Public Health, Philadelphia, PA (S.J.F., J.-Y.P.); and Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY (R.L.D.)
| | - Toshiyuki Tsuji
- From the Department of Physiology, Cardiovascular Research Center (T. Takayanagi, T.K., S.J.F., T.O., T. Tsuji, Y.F., K.J.E., J.-Y.P., S.E.) and Department of Pharmacology, Center for Translational Medicine (D.G.T.), Temple University School of Medicine, Philadelphia, PA; Department of Kinesiology, Temple University College of Public Health, Philadelphia, PA (S.J.F., J.-Y.P.); and Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY (R.L.D.)
| | - Yamato Fukuda
- From the Department of Physiology, Cardiovascular Research Center (T. Takayanagi, T.K., S.J.F., T.O., T. Tsuji, Y.F., K.J.E., J.-Y.P., S.E.) and Department of Pharmacology, Center for Translational Medicine (D.G.T.), Temple University School of Medicine, Philadelphia, PA; Department of Kinesiology, Temple University College of Public Health, Philadelphia, PA (S.J.F., J.-Y.P.); and Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY (R.L.D.)
| | - Katherine J Elliott
- From the Department of Physiology, Cardiovascular Research Center (T. Takayanagi, T.K., S.J.F., T.O., T. Tsuji, Y.F., K.J.E., J.-Y.P., S.E.) and Department of Pharmacology, Center for Translational Medicine (D.G.T.), Temple University School of Medicine, Philadelphia, PA; Department of Kinesiology, Temple University College of Public Health, Philadelphia, PA (S.J.F., J.-Y.P.); and Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY (R.L.D.)
| | - Douglas G Tilley
- From the Department of Physiology, Cardiovascular Research Center (T. Takayanagi, T.K., S.J.F., T.O., T. Tsuji, Y.F., K.J.E., J.-Y.P., S.E.) and Department of Pharmacology, Center for Translational Medicine (D.G.T.), Temple University School of Medicine, Philadelphia, PA; Department of Kinesiology, Temple University College of Public Health, Philadelphia, PA (S.J.F., J.-Y.P.); and Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY (R.L.D.)
| | - Robin L Davisson
- From the Department of Physiology, Cardiovascular Research Center (T. Takayanagi, T.K., S.J.F., T.O., T. Tsuji, Y.F., K.J.E., J.-Y.P., S.E.) and Department of Pharmacology, Center for Translational Medicine (D.G.T.), Temple University School of Medicine, Philadelphia, PA; Department of Kinesiology, Temple University College of Public Health, Philadelphia, PA (S.J.F., J.-Y.P.); and Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY (R.L.D.)
| | - Joon-Young Park
- From the Department of Physiology, Cardiovascular Research Center (T. Takayanagi, T.K., S.J.F., T.O., T. Tsuji, Y.F., K.J.E., J.-Y.P., S.E.) and Department of Pharmacology, Center for Translational Medicine (D.G.T.), Temple University School of Medicine, Philadelphia, PA; Department of Kinesiology, Temple University College of Public Health, Philadelphia, PA (S.J.F., J.-Y.P.); and Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY (R.L.D.)
| | - Satoru Eguchi
- From the Department of Physiology, Cardiovascular Research Center (T. Takayanagi, T.K., S.J.F., T.O., T. Tsuji, Y.F., K.J.E., J.-Y.P., S.E.) and Department of Pharmacology, Center for Translational Medicine (D.G.T.), Temple University School of Medicine, Philadelphia, PA; Department of Kinesiology, Temple University College of Public Health, Philadelphia, PA (S.J.F., J.-Y.P.); and Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY (R.L.D.).
| |
Collapse
|