1
|
Hajdaś G, Koenig H, Pospieszny T. Recent Advances in Steroid Discovery: Structural Diversity and Bioactivity of Marine and Terrestrial Steroids. Int J Mol Sci 2025; 26:3203. [PMID: 40243996 PMCID: PMC11989030 DOI: 10.3390/ijms26073203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Steroids have been pivotal in medicine and biology, with research into their therapeutic potential accelerating over the past few decades. This review examines recent steroid discoveries from marine and terrestrial sources, highlighting both novel compounds and those with newly identified biological activities. The structural diversity of these steroids contributes to their wide range of biological activity, including anticancer, antimicrobial, antidiabetic, anti-inflammatory, and immunomodulatory properties. Particular emphasis is placed on steroids derived from marine invertebrates, fungi, and medicinal plants, which have shown promising therapeutic potential. Advances in analytical techniques such as NMR spectroscopy and mass spectrometry have facilitated the identification of these compounds. These findings emphasize the growing importance of steroids in addressing pressing global health issues, particularly antibiotic resistance and cancer, where new therapeutic strategies are urgently needed. Although many newly identified steroids exhibit potent bioactivity, challenges remain in translating these findings into clinical therapies. Ongoing exploration of natural sources, along with the application of modern synthetic and computational methods, will be crucial in unlocking the full therapeutic potential of steroid-based compounds.
Collapse
Affiliation(s)
| | | | - Tomasz Pospieszny
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland; (G.H.); (H.K.)
| |
Collapse
|
2
|
Liu J, Liu ZY, Fu Y, Gu YC, Li SW, Zhang HY, Guo YW. Anti-inflammatory Steroids from the South China Sea Sponge Spongia officinalis. Chem Biodivers 2024; 21:e202400519. [PMID: 38576052 DOI: 10.1002/cbdv.202400519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
One new highly degraded steroid, namely 21-nor-4-ene-chaxine A (1) furnishing a 5/6/5-tricyclic, along with one known related analogue (2), were isolated from the South China Sea sponge Spongia officinalis. Their structures including absolute configurations were established by extensive spectroscopic data analysis, TDDFT-ECD calculation, and comparison with the spectral data previously reported in the literature. Compound 1 represent the new member of incisterols family with a highly degradation in ring B. In vitro bioassays revealed compound 2 exhibited significant anti-microglial inflammatory effect on lipopolysaccharide (LPS)-induced inflammation in BV-2 microglial cells.
Collapse
Affiliation(s)
- Jiao Liu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zi-Yi Liu
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Yan Fu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Yu-Cheng Gu
- Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire, RG42 6EY, United Kingdom
| | - Song-Wei Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Hai-Yan Zhang
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Yue-Wei Guo
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| |
Collapse
|
3
|
Two New Alkaloids and a New Butenolide Derivative from the Beibu Gulf Sponge-Derived Fungus Penicillium sp. SCSIO 41413. Mar Drugs 2022; 21:md21010027. [PMID: 36662200 PMCID: PMC9864330 DOI: 10.3390/md21010027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Marine sponge-derived fungi have been proven to be a prolific source of bioactive natural products. Two new alkaloids, polonimides E (1) and D (2), and a new butenolide derivative, eutypoid F (11), were isolated from the Beibu Gulf sponge-derived fungus, Penicillium sp. SCSIO 41413, together with thirteen known compounds (3-10, 12-16). Their structures were determined by detailed NMR, MS spectroscopic analyses, and electronic circular dichroism (ECD) analyses. Butenolide derivatives 11 and 12 exhibited inhibitory effect against the enzyme PI3K with IC50 values of 1.7 μM and 9.8 μM, respectively. The molecular docking was also performed to understand the inhibitory activity, while 11 and 12 showed obvious protein/ligand-binding effects to the PI3K protein. Moreover, 4 and 15 displayed obvious inhibitory activity against LPS-induced NF-κB activation in RAW264.7 cells at 10 µM.
Collapse
|
4
|
Cytotoxic Compounds of Two Demosponges ( Aplysina aerophoba and Spongia sp.) from the Aegean Sea. Biomolecules 2021; 11:biom11050723. [PMID: 34065941 PMCID: PMC8151441 DOI: 10.3390/biom11050723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022] Open
Abstract
The class of demosponges is the biggest and most diverse of all described sponge species and it is reported to produce a plethora of chemically different metabolites with interesting biological activities. The focus of the present study was to investigate the chemical composition of two Mediterranean demosponges, targeting their brominated compounds and prenylated hydroquinones, compounds with interesting cytotoxic and anti-microbial properties. In order to gain a deeper insight into the chemical diversity of their metabolites and their activities, 20 pure secondary metabolites including new natural products were isolated from two different species (Aplysina aerophoba and Spongia sp.) using various chromatographic techniques. Their structures were confirmed by NMR and HRMS, revealing molecules with various chemical scaffolds, mainly prenylated hydroquinones from Spongia sp. and halogenated compounds from Aplysina aerophoba, including 5 novel natural products. The isolated compounds were investigated for their cytotoxic properties using 9 different cell lines, and especially one compound, 2,6-dibromo-4-hydroxy-4-methoxycarbonylmethylcyclohexa-2,5-dien-1-one showed good activities in all tested models.
Collapse
|
5
|
Natural Products in Polyclad Flatworms. Mar Drugs 2021; 19:md19020047. [PMID: 33494164 PMCID: PMC7909797 DOI: 10.3390/md19020047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022] Open
Abstract
Marine invertebrates are promising sources of novel bioactive secondary metabolites, and organisms like sponges, ascidians and nudibranchs are characterised by possessing potent defensive chemicals. Animals that possess chemical defences often advertise this fact with aposematic colouration that potential predators learn to avoid. One seemingly defenceless group that can present bright colouration patterns are flatworms of the order Polycladida. Although members of this group have typically been overlooked due to their solitary and benthic nature, recent studies have isolated the neurotoxin tetrodotoxin from these mesopredators. This review considers the potential of polyclads as potential sources of natural products and reviews what is known of the activity of the molecules found in these animals. Considering the ecology and diversity of polyclads, only a small number of species from both suborders of Polycladida, Acotylea and Cotylea have been investigated for natural products. As such, confirming assumptions as to which species are in any sense toxic or if the compounds they use are biosynthesised, accumulated from food or the product of symbiotic bacteria is difficult. However, further research into the group is suggested as these animals often display aposematic colouration and are known to prey on invertebrates rich in bioactive secondary metabolites.
Collapse
|
6
|
Dahiya R, Singh S, Sharma A, Chennupati SV, Maharaj S. First Total Synthesis and Biological Screening of a Proline-Rich Cyclopeptide from a Caribbean Marine Sponge. Mar Drugs 2016; 14:md14120228. [PMID: 27983681 PMCID: PMC5192465 DOI: 10.3390/md14120228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022] Open
Abstract
A natural heptacyclopeptide, stylissamide G (7), previously isolated from the Bahamian marine sponge Stylissa caribica from the Caribbean Sea, was synthesized via coupling of the tetrapeptide l-phenylalanyl-l-prolyl-l-phenylalanyl-l-proline methyl ester with the tripeptide Boc-l-leucyl-l-isoleucyl-l-proline, followed by cyclization of the linear heptapeptide fragment. The structure of the synthesized cyclooligopeptide was confirmed using quantitative elemental analysis, FT-IR, 1H NMR, 13C NMR and mass spectrometry. Results of pharmacological activity studies indicated that the newly synthesized cycloheptapeptide displayed good anthelmintic potential against Megascoplex konkanensis, Pontoscotex corethruses and Eudrilus eugeniea at 2 mg/mL and in addition, potent antifungal activity against pathogenic Candida albicans and dermatophytes Trichophyton mentagrophytes and Microsporum audouinii at a concentration of 6 μg/mL.
Collapse
Affiliation(s)
- Rajiv Dahiya
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Sunil Singh
- Department of Pharmacy, Mewar University, Gangrar, Chittorgarh, Rajasthan 312901, India.
| | - Ajay Sharma
- Department of Pharmacy, College of Health Sciences, Mizan-Tepi University, Mizan Teferi 5140, Ethiopia.
| | - Suresh V Chennupati
- Department of Pharmacy, College of Medical and Health Sciences, Wollega University, P.O. Box 395 Nekemte, Ethiopia.
| | - Sandeep Maharaj
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
7
|
Fang WY, Dahiya R, Qin HL, Mourya R, Maharaj S. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status. Mar Drugs 2016; 14:md14110194. [PMID: 27792168 PMCID: PMC5128737 DOI: 10.3390/md14110194] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/02/2016] [Accepted: 10/15/2016] [Indexed: 12/17/2022] Open
Abstract
Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs.
Collapse
Affiliation(s)
- Wan-Yin Fang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Rajiv Dahiya
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, Saint Augustine, Trinidad and Tobago, West Indies.
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Rita Mourya
- School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar 196, Ethiopia.
| | - Sandeep Maharaj
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, Saint Augustine, Trinidad and Tobago, West Indies.
| |
Collapse
|
8
|
Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL). Mar Drugs 2015; 13:6884-909. [PMID: 26580630 PMCID: PMC4663558 DOI: 10.3390/md13116884] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells.
Collapse
|
9
|
LC-MS-based metabolomics study of marine bacterial secondary metabolite and antibiotic production in Salinispora arenicola. Mar Drugs 2015; 13:249-66. [PMID: 25574739 PMCID: PMC4306935 DOI: 10.3390/md13010249] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/29/2014] [Indexed: 01/06/2023] Open
Abstract
An LC-MS-based metabolomics approach was used to characterise the variation in secondary metabolite production due to changes in the salt content of the growth media as well as across different growth periods (incubation times). We used metabolomics as a tool to investigate the production of rifamycins (antibiotics) and other secondary metabolites in the obligate marine actinobacterial species Salinispora arenicola, isolated from Great Barrier Reef (GBR) sponges, at two defined salt concentrations and over three different incubation periods. The results indicated that a 14 day incubation period is optimal for the maximum production of rifamycin B, whereas rifamycin S and W achieve their maximum concentration at 29 days. A "chemical profile" link between the days of incubation and the salt concentration of the growth medium was shown to exist and reliably represents a critical point for selection of growth medium and harvest time.
Collapse
|
10
|
Rubiolo JA, López-Alonso H, Roel M, Vieytes MR, Thomas O, Ternon E, Vega FV, Botana LM. Mechanism of cytotoxic action of crambescidin-816 on human liver-derived tumour cells. Br J Pharmacol 2014; 171:1655-67. [PMID: 24328908 DOI: 10.1111/bph.12552] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/04/2013] [Accepted: 12/02/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Marine sponges have evolved the capacity to produce a series of very efficient chemicals to combat viruses, bacteria, and eukaryotic organisms. It has been demonstrated that several of these compounds have anti-neoplastic activity. The highly toxic sponge Crambe crambe has been the source of several molecules named crambescidins. Of these, crambescidin-816 has been shown to be cytotoxic for colon carcinoma cells. To further investigate the potential anti-carcinogenic effect of crambescidin-816, we analysed its effect on the transcription of HepG2 cells by microarray analysis followed by experiments guided by the results obtained. EXPERIMENTAL APPROACH After cytotoxicity determination, a transcriptomic analysis was performed to test the effect of crambescidin-816 on the liver-derived tumour cell HepG2. Based on the results obtained, we analysed the effect of crambescidin-816 on cell-cell adhesion, cell-matrix adhesion, and cell migration by Western blot, confocal microscopy, flow cytometry and transmission electron microscopy. Cytotoxicity and cell migration were also studied in a variety of other cell lines derived from human tumours. KEY RESULTS Crambescidin-816 had a cytotoxic effect on all the cell lines studied. It inhibited cell-cell adhesion, interfered with the formation of tight junctions, and cell-matrix adhesion, negatively affecting focal adhesions. It also altered the cytoskeleton dynamics. As a consequence of all these effects on cells crambescidin-816 inhibited cell migration. CONCLUSIONS AND IMPLICATIONS The results indicate that crambescidin-816 is active against tumour cells and implicate a new mechanism for the anti-tumour effect of this compound.
Collapse
Affiliation(s)
- J A Rubiolo
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela (USC), Lugo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Li J, Zhong M, Lei X, Xiao S, Li Z. Diversity and antibacterial activities of culturable fungi associated with coral Porites pukoensis. World J Microbiol Biotechnol 2014; 30:2551-8. [PMID: 25030624 DOI: 10.1007/s11274-014-1701-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/03/2014] [Indexed: 11/27/2022]
Abstract
The diversity of coral associated fungi is not enough understood, especially for scleractinian corals. Members of Porites are common and dominant species of scleractinian corals. To date, the fungal communities associated with coral Porites pukoensis have been not reported. In this paper, the diversity and activity of coral associated fungi in P. pukoensis were explored, 23 fungal strains were isolated, belonging to 10 genera and Aspergillus sp. (30.4 %) was predominant fungal genera. The sequence of isolate C1-23 in GenBank was only 90 % similarity to the most closely related sequences. It is concluded that rich fungal symbionts are attached to P. pukoensis, the rate of isolates with antibacterial activity was up to 30 %, particularly some isolates showed stronger bioactivities to gram-negative bacteria. It is included that the diversity of coral associated fungi in P. pukoensis is abundant and its activity is obviously. So the activities of fungi in P. pukoensis were deserved for further study.
Collapse
Affiliation(s)
- Jun Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524025, China
| | | | | | | | | |
Collapse
|
12
|
Mohamed GA, Abd-Elrazek AEE, Hassanean HA, Alahdal AM, Almohammadi A, Youssef DTA. New fatty acids from the Red Sea sponge Mycale euplectellioides. Nat Prod Res 2014; 28:1082-90. [PMID: 24730698 DOI: 10.1080/14786419.2014.907286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chemical investigation of the Red Sea sponge Mycale euplectellioides afforded two new compounds; hexacosa-(6Z,10Z)-dienoic acid methyl ester (1) and hexacosa-(6Z,10Z)-dienoic acid (2), along with two known compounds: icosa-(8Z,11Z)-dienoic acid methyl ester (3) and β-sitosterol (4). The structures were elucidated by the interpretation of their spectral data. The total methanol extract (TME) of the sponge exhibited potent antimicrobial activity against the different strains at a concentration of 100 mg/mL. All tested fractions did not exhibit any activity against Serratia marcescens and tested fungal strains. The TME and different fractions displayed anti-inflammatory and antipyretic activities at doses of 100 and 200 mg/kg compared with indomethacin (8 mg). The TME exhibited a remarkable hepato-protective effect in CCl4-induced liver damage compared with silymarin. Furthermore, compounds 1 and 2 displayed weak activity against A549 non-small cell lung cancer, the U373 glioblastoma and the PC-3 prostate cancer cell lines.
Collapse
Affiliation(s)
- Gamal A Mohamed
- a Department of Natural Products , Faculty of Pharmacy, King Abdulaziz University , Jeddah 21589 , Saudi Arabia
| | | | | | | | | | | |
Collapse
|
13
|
Bharate SB, Sawant SD, Singh PP, Vishwakarma RA. Kinase inhibitors of marine origin. Chem Rev 2013; 113:6761-815. [PMID: 23679846 DOI: 10.1021/cr300410v] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sandip B Bharate
- Medicinal Chemistry Division, Indian Institute of Integrative Medicine (Council of Scientific and Industrial Research), Canal Road, Jammu-180001, India
| | | | | | | |
Collapse
|
14
|
Ottinger S, Klöppel A, Rausch V, Liu L, Kallifatidis G, Gross W, Gebhard MM, Brümmer F, Herr I. Targeting of pancreatic and prostate cancer stem cell characteristics by Crambe crambe marine sponge extract. Int J Cancer 2011; 130:1671-81. [PMID: 21544815 DOI: 10.1002/ijc.26168] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 04/27/2011] [Indexed: 01/11/2023]
Abstract
Cancer stem cells (CSCs) are suggested as reason for resistance of tumors toward conventional tumor therapy including pancreatic and advanced prostate cancer. New therapeutic agents are urgently needed for targeting of CSCs. Marine sponges harbor novel and undefined compounds with antineoplastic activity but their potential to eliminate CSC characteristics is not examined so far. We collected 10 marine sponges and one freshwater sponge by diving at the seaside and prepared crude methanolic extracts. The effect to established pancreatic and prostate CSC lines was evaluated by analysis of apoptosis, cell cycle, side population, colony and spheroid formation, migratory potential in vitro and tumorigenicity in vivo. While each sponge extract at a 1:10 dilution efficiently diminished viability, Crambe crambe marine sponge extract (CR) still strongly reduced viability of tumor cells at a dilution of 1:1,000 but was less toxic to normal fibroblasts and endothelial cells. CR inhibited self-renewal capacity, apoptosis resistance, and proliferation even in gemcitabine-selected pancreatic cancer cells with acquired therapy resistance and enhanced CSC characteristics. CR pretreatment of tumor cells diminished tumorigenicity of gemcitabine-resistant tumor cells in mice and totally abolished tumor take upon combination with gemcitabine. Our data suggest that CR contains substances, which render standard cancer therapy more effective by targeting of CSC characteristics. Isolation of bioactive metabolites from CR and evaluation in mice are required for development of new CSC-specific chemotherapeutic drugs from a marine sponge.
Collapse
Affiliation(s)
- Sabine Ottinger
- Molecular OncoSurgery, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Leonti M. The future is written: impact of scripts on the cognition, selection, knowledge and transmission of medicinal plant use and its implications for ethnobotany and ethnopharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2011; 134:542-55. [PMID: 21255636 DOI: 10.1016/j.jep.2011.01.017] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/09/2011] [Accepted: 01/09/2011] [Indexed: 05/03/2023]
Abstract
AIM OF THE STUDY Apart from empirically learned medicinal and pharmacological properties, the selection of medicinal plants is dependent on cognitive features, ecological factors and cultural history. In literate societies the transmission of medicinal plant knowledge through texts and, more recently, other media containing local as well as non-local knowledge has a more immediate and a more prolonged effect than oral transmission. Therefore, I try to visualize how field based studies in ethnobiology and especially medical ethnobotany and ethnopharmacology run the risk of repeating information and knowledge and illustrate the importance of differentiating and acknowledging the origin, transmission and rationale of plant use made by humans. MATERIALS AND METHODS Reviewing literature dealing with the traditional parameters (e.g. hot/cold dichotomy, organoleptic properties, doctrine of signatures) influencing the selection and transmission of plant use in a juxtaposition to our recent finding of causal influence of text on local plant use. Discussing the passing down of knowledge by text as a special case of oblique/one-to-many knowledge transmission. RESULTS Historical texts on materia medica, popular books on plant use, clinical studies, and informants of ethnobotanical field studies generate a circle of information and knowledge, which progressively conditions the results of ethnobotanical field studies. While text reporting on phytotherapeutical trends may cause innovation through the introduction of "new" applications to local customs, persistently repeating well established folk remedies leads to the consolidation of such uses adding a conservative dimension to a local pharmacopoeia, which might not actually be there to that extent. CONCLUSIONS Such a "shaping" of what might appear to be the results of a field investigation is clearly outside the ordinary principles of scientific enquiry. The traditional pillars of ethnobotanical field studies - that is, "input to drug discovery" and "conservation of cultural heritage" - are also incompatible with this process. Ethnobotancial field studies aimed at a contribution to natural products research and/or the conservation of cultural heritage, as well as those aimed at an assessment and validation of local pharmacopoeias should differentiate between local plant use and widespread as well as modern knowledge reported in popular textbooks and scientific literature.
Collapse
Affiliation(s)
- Marco Leonti
- Dipartimento Farmaco Chimico Tecnologico, Università di Cagliari, Facoltà di Farmacia, Via Ospedale 72, 09124 Cagliari (CA), Italy. ,
| |
Collapse
|
16
|
Liu WC, Li CQ, Zhu P, Yang JL, Cheng KD. Phylogenetic diversity of culturable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Island coastal waters of the South China Sea. FUNGAL DIVERS 2010. [DOI: 10.1007/s13225-010-0022-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Schupp PJ, Kohlert-Schupp C, Whitefield S, Engemann A, Rohde S, Hemscheidt T, Pezzuto JM, Kondratyuk TP, Park EJ, Marler L, Rostama B, Wright AD. Cancer Chemopreventive and Anticancer Evaluation of Extracts and Fractions from Marine Macro- and Microorganisms Collected from Twilight Zone Waters around Guam[1]. Nat Prod Commun 2009. [DOI: 10.1177/1934578x0900401222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The cancer chemopreventive and cytotoxic properties of 50 extracts derived from Twilight Zone (50–150 m) sponges, gorgonians and associated bacteria, together with 15 extracts from shallow water hard corals, as well as 16 fractions derived from the methanol solubles of the Twilight Zone sponge Suberea sp, were assessed in a series of bioassays. These assays included: Induction of quinone reductase (QR), inhibition of TNF-α activated nuclear factor kappa B (NFκB), inhibition of aromatase, interaction with retinoid X receptor (RXR), inhibition of nitric oxide (NO) synthase, inhibition 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), and inhibition of HL-60 and MCF-7 cell proliferation. The results of these assays showed that at least 10 extracts and five fractions inhibited NFκB by greater than 60%, two extracts and two fractions inhibited DPPH by more than 50%, nine extracts and two fractions affected the survival of HL-60 cells, no extracts or fractions affected RXR, three extracts and six fractions affected quinone reductase (QR), three extracts and 12 fractions significantly inhibited aromatase, four extracts and five fractions inhibited nitric oxide synthase, and one extract and no fractions inhibited the growth of MCF-7 cells by more than 95%. These data revealed the tested samples to have many and varied activities, making them, as shown with the extract of the Suberea species, useful starting points for further fractionation and purification. Moreover, the large number of samples demonstrating activity in only one or sometimes two assays accentuates the potential of the Twilight Zone, as a largely unexplored habitat, for the discovery of selectively bioactive compounds. The overall high hit rate in many of the employed assays is considered to be a significant finding in terms of “normal” hit rates associated with similar samples from shallower depths.
Collapse
Affiliation(s)
- Peter J. Schupp
- Marine Laboratory, University of Guam, Mangilao, Guam 96923
- Cancer Research Center of Hawaii, Honolulu, Hawaii 96813, USA
| | | | | | - Anna Engemann
- Marine Laboratory, University of Guam, Mangilao, Guam 96923
| | - Sven Rohde
- Marine Laboratory, University of Guam, Mangilao, Guam 96923
| | | | - John M. Pezzuto
- College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720, USA
- Cancer Research Center of Hawaii, Honolulu, Hawaii 96813, USA
| | - Tamara P. Kondratyuk
- College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720, USA
| | - Eun-Jung Park
- College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720, USA
| | - Laura Marler
- College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720, USA
| | - Bahman Rostama
- College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720, USA
| | - Anthony D. Wright
- College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720, USA
- Cancer Research Center of Hawaii, Honolulu, Hawaii 96813, USA
| |
Collapse
|
18
|
Gao Z, Li B, Zheng C, Wang G. Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 2008; 74:6091-101. [PMID: 18676706 PMCID: PMC2565983 DOI: 10.1128/aem.01315-08] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 07/24/2008] [Indexed: 11/20/2022] Open
Abstract
Symbiotic microbes play a variety of fundamental roles in the health and habitat ranges of their hosts. While prokaryotes in marine sponges have been broadly characterized, the diversity of sponge-inhabiting fungi has barely been explored using molecular approaches. Fungi are an important component of many marine and terrestrial ecosystems, and they may be an ecologically significant group in sponge-microbe interactions. This study tested the feasibility of using existing fungal primers for molecular analysis of sponge-associated fungal communities. None of the eight selected primer pairs yielded satisfactory results in fungal rRNA gene or internal transcribed spacer (ITS) clone library constructions. However, 3 of 10 denaturing gradient gel electrophoresis (DGGE) primer sets, which were designed to preferentially amplify fungal rRNA gene or ITS regions from terrestrial environmental samples, were successfully amplified from fungal targets in marine sponges. DGGE analysis indicated that fungal communities differ among different sponge species (Suberites zeteki and Mycale armata) and also vary between sponges and seawater. Sequence analysis of DGGE bands identified 23 and 21 fungal species from each of the two sponge species S. zeteki and M. armata, respectively. These species were representatives of 11 taxonomic orders and belonged to the phyla of Ascomycota (seven orders) and Basidiomycota (four orders). Five of these taxonomic orders (Malasseziales, Corticiales, Polyporales, Agaricales, and Dothideomycetes et Chaetothyriomcetes incertae sedis) have now been identified for the first time in marine sponges. Seven and six fungal species from S. zeteki and M. armata, respectively, are potentially new species because of their low sequence identity (< or =98%) with their references in GenBank. Phylogenetic analysis indicated sponge-derived sequences were clustered into "marine fungus clades" with those from other marine habitats. This is the first report of molecular analysis of fungal communities in marine sponges, adding depth and dimension to our understanding of sponge-associated microbial communities.
Collapse
Affiliation(s)
- Zheng Gao
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | | | |
Collapse
|
19
|
Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 2007; 71:295-347. [PMID: 17554047 PMCID: PMC1899876 DOI: 10.1128/mmbr.00040-06] [Citation(s) in RCA: 820] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine sponges often contain diverse and abundant microbial communities, including bacteria, archaea, microalgae, and fungi. In some cases, these microbial associates comprise as much as 40% of the sponge volume and can contribute significantly to host metabolism (e.g., via photosynthesis or nitrogen fixation). We review in detail the diversity of microbes associated with sponges, including extensive 16S rRNA-based phylogenetic analyses which support the previously suggested existence of a sponge-specific microbiota. These analyses provide a suitable vantage point from which to consider the potential evolutionary and ecological ramifications of these widespread, sponge-specific microorganisms. Subsequently, we examine the ecology of sponge-microbe associations, including the establishment and maintenance of these sometimes intimate partnerships, the varied nature of the interactions (ranging from mutualism to host-pathogen relationships), and the broad-scale patterns of symbiont distribution. The ecological and evolutionary importance of sponge-microbe associations is mirrored by their enormous biotechnological potential: marine sponges are among the animal kingdom's most prolific producers of bioactive metabolites, and in at least some cases, the compounds are of microbial rather than sponge origin. We review the status of this important field, outlining the various approaches (e.g., cultivation, cell separation, and metagenomics) which have been employed to access the chemical wealth of sponge-microbe associations.
Collapse
Affiliation(s)
- Michael W Taylor
- Department of Microbial Ecology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria.
| | | | | | | |
Collapse
|
20
|
Wang G, Li Q, Zhu P. Phylogenetic diversity of culturable fungi associated with the Hawaiian Sponges Suberites zeteki and Gelliodes fibrosa. Antonie van Leeuwenhoek 2007; 93:163-74. [PMID: 17647088 DOI: 10.1007/s10482-007-9190-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Accepted: 07/04/2007] [Indexed: 11/25/2022]
Abstract
Sponges are well documented to harbor large amounts of microbes. Both culture-dependent and molecular approaches have revealed remarkable bacterial diversity in marine sponges. Fungi are commonly isolated from marine sponges, yet no reports on phylogenetic diversity of sponge-inhabiting fungi exist. In this report, we investigated the phylogenetic diversity of culturable fungi from the Hawaiian alien marine sponges Suberites zeteki and Gelliodes fibrosa. A total of 44 independent isolates were recovered from these two sponge species, representing 7 orders and 22 genera of Ascomycota. The majority (58%) of fungal isolates from S. zeteki resided in the Pleosporales group, while the predominant isolates (52%) from G. fibrosa were members of the Hypocreales group. Though differing in fungal species composition and structure, culturable communities of these two sponges displayed similar phylogenetic diversity. At the genus level, only two genera Penicillium and Trichoderma in the Eurotiales and Hypocreales orders, respectively, were present in both sponge species. The other genera of the fungal isolates were associated with either S. zeteki or G. fibrosa. Some of these fungal genera had been isolated from sponges collected in other marine habitats, but more than half of these genera were identified for the first time in these two marine sponges. Overall, the diversity of culturable fungal communities from these two sponge species is much higher than that observed in studies of marine sponges from other areas. This is the first report of phylogenetic diversity of marine sponge-associated fungi and adds one more dimension to our current understanding of the phylogenetic diversity of sponge-symbiotic microbes.
Collapse
Affiliation(s)
- Guangyi Wang
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
21
|
Simon-Levert A, Aze A, Bontemps-Subielos N, Banaigs B, Genevière AM. Antimitotic activity of methoxyconidiol, a meroterpene isolated from an ascidian. Chem Biol Interact 2007; 168:106-16. [PMID: 17448456 DOI: 10.1016/j.cbi.2007.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 02/21/2007] [Accepted: 03/01/2007] [Indexed: 11/26/2022]
Abstract
Methoxyconidiol is a meroterpene previously extracted from the ascidian Aplidium aff. densum [A. Simon-Levert, A. Arrault, N. Bontemps-Subielos, C. Canal, B. Banaigs. Meroterpenes from the ascidian Aplidium aff. densum, J. Nat. Prod. 68 (2005) 1412-1415]. In the present work we investigated its antimitotic effect on eukaryotic cells by using a bioassay based on the sea urchin early embryo. This bioassay has been successfully used to evaluate the efficacy of antiproliferative agents and to rapidly determine the affected cell cycle phase. We demonstrated that methoxyconidiol inhibits the cleavages of sea urchin Sphaerechinus granularis and Paracentrotus lividus fertilized eggs. This meroterpene disrupts M-phase progression and completely blocks cytokinesis without having any effect on DNA replication. The treatment severely disturbs the establishment of a mitotic spindle, most likely by affecting microtubule dynamics. Moreover, while the cell cycle regulatory kinase cyclin B/CDK1 is activated, cyclin B proteolysis is inhibited, impeding the output of M-phase. This characteristic cell cycle arrest induced by methoxyconidiol in sea urchin eggs emphasizes the interest for this drug as a putative antiproliferative agent for tumor cells.
Collapse
Affiliation(s)
- Annabel Simon-Levert
- Laboratoire de Chimie des Biomolécules et de l'Environnement, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex, France
| | | | | | | | | |
Collapse
|
22
|
Mayer AMS, Rodríguez AD, Berlinck RGS, Hamann MT. Marine pharmacology in 2003-4: marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2007; 145:553-81. [PMID: 17392033 PMCID: PMC2151674 DOI: 10.1016/j.cbpc.2007.01.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515, USA.
| | | | | | | |
Collapse
|
23
|
Dembitsky VM. Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides. Lipids 2006; 40:1081-105. [PMID: 16459921 DOI: 10.1007/s11745-005-1473-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review article presents 209 alkaloid glycosides isolated and identified from plants, microorganisms, and marine invertebrates that demonstrate different biological activities. They are of great interest, especially for the medicinal and/or pharmaceutical industries. These biologically active glycosides have good potential for future chemical preparation of compounds useful as antioxidants, anticancer, antimicrobial, and antibacterial agents. These glycosidic compounds have been subdivided into several groups, including: acridone; aporphine; benzoxazinoid; ergot; indole; enediyne alkaloidal antibiotics; glycosidic lupine alkaloids; piperidine, pyridine, pyrrolidine, and pyrrolizidine alkaloid glycosides; glycosidic quinoline and isoquinoline alkaloids; steroidal glycoalkaloids; and miscellaneous alkaloid glycosides.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Department of Organic Chemistry and School of Pharmacy, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
24
|
Wang G. Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 2006; 33:545-51. [PMID: 16761166 DOI: 10.1007/s10295-006-0123-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
Sponges are well known to harbor diverse microbes and represent a significant source of bioactive natural compounds derived from the marine environment. Recent studies of the microbial communities of marine sponges have uncovered previously undescribed species and an array of new chemical compounds. In contrast to natural compounds, studies on enzymes with biotechnological potential from microbes associated with sponges are rare although enzymes with novel activities that have potential medical and biotechnological applications have been identified from sponges and microbes associated with sponges. Both bacteria and fungi have been isolated from a wide range of marine sponge, but the diversity and symbiotic relationship of bacteria has been studied to a greater extent than that of fungi isolated from sponges. Molecular methods (e.g., rDNA, DGGE, and FISH) have revealed a great diversity of the unculturable bacteria and archaea. Metagenomic approaches have identified interesting metabolic pathways responsible for the production of natural compounds and may provide a new avenue to explore the microbial diversity and biotechnological potential of marine sponges. In addition, other eukaryotic organisms such as diatoms and unicellular algae from marine sponges are also being described using these molecular techniques. Many natural compounds derived from sponges are suspected to be of bacterial origin, but only a few studies have provided convincing evidence for symbiotic producers in sponges. Microbes in sponges exist in different associations with sponges including the true symbiosis. Fungi derived from marine sponges represent the single most prolific source of diverse bioactive marine fungal compounds found to date. There is a developing interest in determining the true diversity of fungi present in marine sponges and the nature of the association. Molecular methods will allow scientists to more accurately identify fungal species and determine actual diversity of sponge-associated fungi. This is especially important as greater cooperation between bacteriologists, mycologists, natural product chemists, and bioengineers is needed to provide a well-coordinated effort in studying the diversity, ecology, physiology, and association between bacteria, fungi, and other organisms present in marine sponges.
Collapse
Affiliation(s)
- Guangyi Wang
- Department of Oceanography, University of Hawaii at Manoa, 1680 East-West Road, POST 103B, Honolulu, HI 96822, USA.
| |
Collapse
|
25
|
Aquaculture of “Non-Food Organisms” for Natural Substance Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005. [DOI: 10.1007/b135821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
26
|
Abstract
This review covers the literature published in 2003 for marine natural products, with 619 citations (413 for the period January to December 2003) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, coelenterates, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (656 for 2003), together with their relevant biological activities, source organisms and country or origin. Biosynthetic studies or syntheses that lead to the revision of structures or stereochemistries have been included (78), including any first total syntheses of a marine natural product.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
27
|
Hiort J, Maksimenka K, Reichert M, Perović-Ottstadt S, Lin WH, Wray V, Steube K, Schaumann K, Weber H, Proksch P, Ebel R, Müller WEG, Bringmann G. New natural products from the sponge-derived fungus Aspergillus niger. JOURNAL OF NATURAL PRODUCTS 2004; 67:1532-1543. [PMID: 15387655 DOI: 10.1021/np030551d] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fractionation of the EtOAc extract of a static culture of Aspergillus niger isolated from the Mediterranean sponge Axinella damicornis yielded eight secondary metabolites, out of which seven compounds (2-8) proved to be new natural products, whereas one was identified as the known fungal pigment cycloleucomelone (1). The new compounds included the 3,3'-bicoumarin bicoumanigrin (2), the structurally unusual 4-benzyl-1H-pyridin-6-one derivatives aspernigrins A and B (3 and 4), and pyranonigrins A-D (5-8), the latter featuring a novel pyrano[3,2-b]pyrrole skeleton hitherto unprecedented in nature. All structures were elucidated on the basis of extensive one- and two-dimensional NMR spectroscopic studies ((1)H, (13)C, COSY, HMQC, HMBC, NOE difference spectra) and mass spectral analysis. For the two chiral molecules 4 and 5, the absolute configurations were established by quantum chemical calculations of their circular dichroism (CD) spectra. In each case, two independent methods, i.e., a molecular dynamics approach taking into consideration the molecular flexibility, and a conformational analysis followed by Boltzmann weighting of the single CD spectra calculated for the conformers thus obtained, led to identical results without the need of any empirical comparison of chiroptical data reported for reference compounds. Bicoumanigrin (2) showed moderate cytotoxicity against human cancer cell lines in vitro. In addition, aspernigrin B (4) was found to display a strong neuroprotective effect against glutamic acid.
Collapse
Affiliation(s)
- J Hiort
- Institut für Pharmazeutische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Geb. 26.23., D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|