1
|
Diallo S, Badiane FA, Kabkia BNA, Diédhiou I, Diouf M, Diouf D. Genetic diversity and population structure of cowpea mutant collection using SSR and ISSR molecular markers. Sci Rep 2024; 14:31833. [PMID: 39738245 PMCID: PMC11686381 DOI: 10.1038/s41598-024-83087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/11/2024] [Indexed: 01/01/2025] Open
Abstract
Cowpea is a seed legume, important for food and nutritional security in Africa's arid and semi-arid zones. Despite its importance, cowpea is experiencing a loss of genetic diversity due to climate change. Therefore, this study aimed to evaluate the genetic variability of 33 cowpea mutant collections using 20 SSR and 13 ISSR markers. This analysis shows an average number of alleles of 5.15 for SSR and 6.7 for ISSR. The highest average genetic distance based on Nei's index among subgroups was 0.740 and the value of polymorphism information content varied from 0.02 to 0.23 for SSR and from 0.05 to 0.36 for ISSR. Our results revealed high genetic diversity based on the GD (0.126), Fst (0.513), and Shannon information index (0.246). The population structure analysis showed 3 and 4 clusters for ISSR and SSR markers, respectively. Genetic variation, as assessed by analysis of molecular variance, mostly indicates higher genetic diversity within the population than among populations. The hierarchical clustering of combined SSR and ISSR markers grouped the accessions into four groups, supporting the STRUCTURE analysis results. Additionally, the combination of SSR and ISSR provided better information on the level of genetic diversity, and population structure, and was more effective in determining the relationship between cowpea collection. This study enhances our understanding of the genetic organization of our mutant collection which can be used in breeding programs in the era of climate change.
Collapse
Affiliation(s)
- Sara Diallo
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Dakar, 10700, Senegal
- Centre d'excellence Africain en Agriculture pour la Sécurité Alimentaire et nutritionnelle (CEA-AGRISAN), Dakar, Senegal
| | - François Abaye Badiane
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Dakar, 10700, Senegal
- Faculté des Sciences et Technologies de l'Education et de la Formation, Université Cheikh Anta Diop, Dakar-Fann, Dakar, 10700, Senegal
| | - Badji-N'Poneh Ange Kabkia
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Dakar, 10700, Senegal
| | - Issa Diédhiou
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Dakar, 10700, Senegal
| | - Made Diouf
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Dakar, 10700, Senegal
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Dakar, 10700, Senegal.
| |
Collapse
|
2
|
Mittal N, Bhardwaj J, Verma S, Singh RK, Yadav R, Kaur D, Talukdar A, Yadav N, Kumar R. Disentangling potential genotypes for macro and micro nutrients and polymorphic markers in Chickpea. Sci Rep 2023; 13:10731. [PMID: 37400481 DOI: 10.1038/s41598-023-37602-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
The present investigation was conducted to assess the nutritional diverseness and identify novel genetic resources to be utilized in chickpea breeding for macro and micro nutrients. The plants were grown in randomized block design. Nutritional and phytochemical properties of nine chickpea genotypes were estimated. The EST sequences from NCBI database were downloaded in FASTA format, clustered into contigs using CAP3, mined for novel SSRs using TROLL analysis and primer pairs were designed using Primer 3 software. Jaccard's similarity coefficients were used to compare the nutritional and molecular indexes followed by dendrograms construction employing UPGMA approach. The genotypes PUSA-1103, K-850, PUSA-1108, PUSA-1053 and the EST-SSR markers including the 5 newly designed namely ICCeM0012, ICCeM0049, ICCeM0067, ICCeM0070, ICCeM0078, SVP55, SVP95, SVP96, SVP146, and SVP217 were found as potential donor/marker resources for the macro-micro nutrients. The genotypes differed (p < 0.05) for nutritional properties. Amongst newly designed primers, 6 were found polymorphic with median PIC (0.46). The alleles per primer ranged 1 to 8. Cluster analysis based on nutritional and molecular diversities partially matched to each other in principle. The identified novel genetic resources may be used to widen the germplasm base, prepare maintainable catalogue and identify systematic blueprints for future chickpea breeding strategies targeting macro-micro nutrients.
Collapse
Affiliation(s)
- Neha Mittal
- Department of Biotechnology, Meerut Institute of Engineering & Technology, Meerut, 250005, India
| | - Juhi Bhardwaj
- Department of Biotechnology, Meerut Institute of Engineering & Technology, Meerut, 250005, India
| | - Shruti Verma
- NCoE-SAM, Department of Pediatrics, KSCH, Lady Hardinge Medical College, New Delhi, 110001, India
| | - Rajesh Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Renu Yadav
- AIOA, Amity University, Noida, UP, 201313, India
| | - D Kaur
- Centre for Food Technology, University of Allahabad, Prayagraj, UP, 211002, India
| | - Akshay Talukdar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neelam Yadav
- Centre for Food Technology, University of Allahabad, Prayagraj, UP, 211002, India
| | - Rajendra Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
3
|
Fiore MC, Mercati F, Spina A, Blangiforti S, Venora G, Dell'Acqua M, Lupini A, Preiti G, Monti M, Pè ME, Sunseri F. High-Throughput Genotype, Morphology, and Quality Traits Evaluation for the Assessment of Genetic Diversity of Wheat Landraces from Sicily. PLANTS 2019; 8:plants8050116. [PMID: 31052327 PMCID: PMC6572038 DOI: 10.3390/plants8050116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/23/2023]
Abstract
During the XX Century, the widespread use of modern wheat cultivars drastically reduced the cultivation of ancient landraces, which nowadays are confined to niche cultivation areas. Several durum wheat landraces adapted to the extreme environments of the Mediterranean region, are still being cultivated in Sicily, Italy. Detailed knowledge of the genetic diversity of this germplasm could lay the basis for their efficient management in breeding programs, for a wide-range range of traits. The aim of the present study was to characterize a collection of durum wheat landraces from Sicily, using single nucleotide polymorphisms (SNP) markers, together with agro-morphological, phenological and quality-related traits. Two modern cv. Simeto, Claudio, and the hexaploid landrace, Cuccitta, were used as outgroups. Cluster analysis and Principal Coordinates Analysis (PCoA) allowed us to identify four main clusters across the analyzed germplasm, among which a cluster included only historical and modern varieties. Likewise, structure analysis was able to distinguish the ancient varieties from the others, grouping the entries in seven cryptic genetic clusters. Furthermore, a Principal Component Analysis (PCA) was able to separate the modern testers from the ancient germplasm. This approach was useful to classify and evaluate Sicilian ancient wheat germplasm, supporting their safeguard and providing a genetic fingerprint that is necessary for avoiding commercial frauds to sustaining the economic profits of farmers resorting to landraces cultivation.
Collapse
Affiliation(s)
- Maria Carola Fiore
- CREA Research Centre for Plant Protection and Certification, 90011 Bagheria (PA), Italy.
| | - Francesco Mercati
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), 90129 Palermo, Italy.
| | - Alfio Spina
- CREA Research Centre for Cereal and Industrial Crops, Acireale (CT) 95024, Italy.
| | - Sebastiano Blangiforti
- Stazione Consorziale Sperimentale di Granicoltura per la Sicilia, 95041 Caltagirone (CT), Italy.
| | - Gianfranco Venora
- Stazione Consorziale Sperimentale di Granicoltura per la Sicilia, 95041 Caltagirone (CT), Italy.
| | - Matteo Dell'Acqua
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - Antonio Lupini
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, 89021 Reggio Calabria, Italy.
| | - Giovanni Preiti
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, 89021 Reggio Calabria, Italy.
| | - Michele Monti
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, 89021 Reggio Calabria, Italy.
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - Francesco Sunseri
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, 89021 Reggio Calabria, Italy.
| |
Collapse
|
4
|
Rajendran HAD, Muthusamy R, Stanislaus AC, Krishnaraj T, Kuppusamy S, Ignacimuthu S, Al-Dhabi NA. Analysis of molecular variance and population structure in southern Indian finger millet genotypes using three different molecular markers. JOURNAL OF CROP SCIENCE AND BIOTECHNOLOGY 2016; 19:275-283. [DOI: 10.1007/s12892-016-0015-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
|
5
|
Kumar M, Choi JY, Kumari N, Pareek A, Kim SR. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica. FRONTIERS IN PLANT SCIENCE 2015; 6:688. [PMID: 26388887 PMCID: PMC4559640 DOI: 10.3389/fpls.2015.00688] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/20/2015] [Indexed: 05/19/2023]
Abstract
Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the "candidate genes" and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops.
Collapse
Affiliation(s)
- Manu Kumar
- Plant Molecular Biology Laboratory, Department of Life Science, Sogang University, SeoulSouth Korea
| | - Ju-Young Choi
- Plant Molecular Biology Laboratory, Department of Life Science, Sogang University, SeoulSouth Korea
| | - Nisha Kumari
- College of Medicine, Seoul National University, SeoulSouth Korea
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Science, Jawaharlal Nehru University, New DelhiIndia
| | - Seong-Ryong Kim
- Plant Molecular Biology Laboratory, Department of Life Science, Sogang University, SeoulSouth Korea
| |
Collapse
|
6
|
Jain S, Kumar A, Mamidi S, McPhee K. Genetic diversity and population structure among pea (Pisum sativum L.) cultivars as revealed by simple sequence repeat and novel genic markers. Mol Biotechnol 2014; 56:925-38. [PMID: 24894738 DOI: 10.1007/s12033-014-9772-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Field pea (Pisum sativum L.) is an important cool season legume crop widely grown around the world. This research provides a basis for selection of pea germplasm across geographical regions in current and future breeding and genetic mapping efforts for pea improvement. Eleven novel genic markers were developed from pea expressed sequence tag (EST) sequences having significant similarity with gene calls from Medicago truncatula spanning at least one intron. In this study, 96 cultivars widely grown or used in breeding programs in the USA and Canada were analyzed for genetic diversity using 31 microsatellite or simple sequence repeat (SSR) and 11 novel EST-derived genic markers. The polymorphic information content varied from 0.01-0.56 among SSR markers and 0.04-0.43 among genic markers. The results showed that SSR and EST-derived genic markers displayed one or more highly reproducible, multi-allelic, and easy to score loci ranging from 200 to 700 bp in size. Genetic diversity was assessed through unweighted neighbor-joining method, and 96 varieties were grouped into three main clusters based on the dissimilarity matrix. Four subpopulations were determined through STRUCTURE analysis with no significant geographic separation of the subpopulations. The findings of the present study can be used to select diverse genotypes to be used as parents of crosses aimed for breeding improved pea cultivars.
Collapse
Affiliation(s)
- Shalu Jain
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | | | | | | |
Collapse
|
7
|
Nirgude M, Babu BK, Shambhavi Y, Singh UM, Upadhyaya HD, Kumar A. Development and molecular characterization of genic molecular markers for grain protein and calcium content in finger millet (Eleusine coracana (L.) Gaertn.). Mol Biol Rep 2014; 41:1189-200. [PMID: 24477581 DOI: 10.1007/s11033-013-2825-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 10/25/2013] [Indexed: 11/29/2022]
Abstract
Finger millet (Eleusine coracana (L.) Gaertn), holds immense agricultural and economic importance for its high nutraceuticals quality. Finger millets seeds are rich source of calcium and its proteins are good source of essential amino acids. In the present study, we developed 36 EST-SSR primers for the opaque2 modifiers and 20 anchored-SSR primers for calcium transporters and calmodulin for analysis of the genetic diversity of 103 finger millet genotypes for grain protein and calcium contents. Out of the 36 opaque2 modifiers primers, 15 were found polymorphic and were used for the diversity analysis. The highest PIC value was observed with the primer FMO2E33 (0.26), while the lowest was observed FMO2E27 (0.023) with an average value of 0.17. The gene diversity was highest for the primer FMO2E33 (0.33), however it was lowest for FMO2E27 (0.024) at average value of 0.29. The percentage polymorphism shown by opaque2 modifiers primers was 68.23%. The diversity analysis by calcium transporters and calmodulin based anchored SSR loci revealed that the highest PIC was observed with the primer FMCA8 (0.30) and the lowest was observed for FMCA5 (0.023) with an average value of 0.18. The highest gene diversity was observed for primer FMCA8 (0.37), while lowest for FMCA5 (0.024) at an average of 0.21. The opaque2 modifiers specific EST-SSRs could able to differentiate the finger millet genotypes into high, medium and low protein containing genotypes. However, calcium dependent candidate gene based EST-SSRs could broadly differentiate the genotypes based on the calcium content with a few exceptions. A significant negative correlation between calcium and protein content was observed. The present study resulted in identification of highly polymorphic primers (FMO2E30, FMO2E33, FMO2-18 and FMO2-14) based on the parameters such as percentage of polymorphism, PIC values, gene diversity and number of alleles.
Collapse
Affiliation(s)
- M Nirgude
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences & Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, 263 145, India
| | | | | | | | | | | |
Collapse
|
8
|
Comparative evaluation of genetic diversity using RAPD, SSR and cytochrome P450 gene based markers with respect to calcium content in finger millet (Eleusine coracana L. Gaertn.). J Genet 2011; 89:121-33. [PMID: 20861563 DOI: 10.1007/s12041-010-0052-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Genetic relationships among 52 Eleusine coracana (finger millet) genotypes collected from different districts of Uttarakhand were investigated by using randomly amplified polymorphic DNA (RAPD), simple sequence repeat (SSR) and cytochrome P450 gene based markers. A total of 18 RAPD primers, 10 SSR primers, and 10 pairs of cytochrome P450 gene based markers, respectively, revealed 49.4%, 50.2% and 58.7% polymorphism in 52 genotypes of E. coracana. Mean polymorphic information content (PIC) for each of these marker systems (0.351 for RAPD, 0.505 for SSR and 0.406 for cyt P450 gene based markers) suggested that all the marker systems were effective in determining polymorphisms. Pair-wise similarity index values ranged from 0.011 to 0.999 (RAPD), 0.010 to 0.999 (SSR) and 0.001 to 0.998 (cyt P450 gene based markers) and mean similarity index value of 0.505, 0.504 and 0.499, respectively. The dendrogram developed by RAPD, SSR and cytochrome P450 gene based primers analyses revealed that the genotypes are grouped in different clusters according to high calcium (300-450 mg/100 g), medium calcium (200-300 mg/100 g) and low calcium (100-200 mg/100 g). Mantel test employed for detection of goodness of fit established cophenetic correlation values above 0.95 for all the three marker systems. The dendrograms and principal coordinate analysis (PCA) plots derived from the binary data matrices of the three marker systems are highly concordant. High bootstrap values were obtained at major nodes of phenograms through WINBOOT software. Comparison of RAPD, SSR and cytochrome P450 gene based markers, in terms of the quality of data output, indicated that SSRs and cyt P450 gene based markers are particularly promising for the analysis of plant genome diversity. The genotypes of finger millet collected from different districts of Uttarakhand constitute a wide genetic base and clustered according to calcium contents. The identified genotypes could be used in breeding programmes and amajor input into conservation biology of cereal crops.
Collapse
|
9
|
Yildirim E, Yildirim N, Ercisli S, Agar G, Karlidag H. Genetic relationships among turnip (Brassica rapa var. rapa) genotypes. GENETICS AND MOLECULAR RESEARCH 2010; 9:987-93. [PMID: 20506086 DOI: 10.4238/vol9-2gmr786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Turnip (Brassica rapa var. rapa) is one of the main vegetables consumed by people living in Eastern Anatolia in Turkey. In this region, farmers obtain their own seeds for production, which results in considerable morphological variability. We examined the genetic variation and relationships among 11 turnip genotypes sampled from diverse environments of the Erzurum region located in Eastern Anatolia in Turkey. Thirty-two Operon RAPD primers were screened; among them, 20 gave reproducible and clear DNA fragments after amplification. The average polymorphism ratio was 90.4%. The genetic distance between turnip genotypes were found to range from 0.302 to 0.733, indicating high genetic variability. Eleven genotypes were divided into three main clusters in a dendrogram; ETS2 and ETS8 genotypes were the most distant. We conclude that RAPD analysis would be useful for genotyping turnip genotypes.
Collapse
Affiliation(s)
- E Yildirim
- Department of Horticulture, Ispir Hamza Polat Vacational School, Erzurum, Turkey
| | | | | | | | | |
Collapse
|
10
|
ZHAO YG, Ofori A, LU CM. Genetic Diversity of European and Chinese Oilseed Brassica rapa Cultivars from Different Breeding Periods. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1671-2927(08)60297-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|