Abstract
Bacterial genomes typically consist of a single chromosome and, optionally, one or more plasmids. But whole-genome sequencing reveals about ten per-cent of them to be multipartite, with additional replicons which by size and indispensability are considered secondary chromosomes. This raises the questions of how their replication and partition is managed without compromising genome stability and of how such genomes arose. Vibrio cholerae, with a 1 Mb replicon in addition to its 3 Mb chromosome, is the only species for which maintenance of a multipartite genome has been investigated. In this study we have explored the more complex genome of Burkholderia cenocepacia (strain J2315). It comprises an extra replicon (c2) of 3.21 Mb, comparable in size to the3.87Mb main chromosome (c1), another extra replicon(c3) of 0.87 Mb and a plasmid of 0.09 Mb. The replication origin of c1 is typically chromosomal and those of c2 and c3 are plasmid-like; all are replicated bidirectionally. Fluorescence microscopy of tagged origins indicates that all initiate replication at mid-cell and segregate towards the cell quarter positions sequentially, c1-c2-p1/c3. c2 segregation is as well-phased with the cell cycle as c1, implying that this plasmid-like origin has become subject to regulation not typical of plasmids; in contrast, c3 segregates more randomly through the cycle. Disruption of individual Par systems by deletion of parAB or by addition of parS sites showed each Par system to govern the positioning of its own replicon only. Inactivation of c1, c2 and c3 Par systems not only reduced growth rate, generated anucleate cells and compromised viability but influenced processes beyond replicon partition, notably regulation of replication, chromosome condensation and cell size determination. In particular, the absence of the c1 ParA protein altered replication of all three chromosomes, suggesting that the partition system of the main chromosome is a major participant in the choreography of the cell cycle.
Unlike higher organisms, bacteria typically carry their genetic information on a single chromosome. But in a few bacterial families the genome includes one to three additional chromosome-like DNA molecules. Because these families are rich in pathogenic and environmentally versatile species, it is important to understand how their split genomes evolved and how their maintenance is managed without confusion. We find that mitotic segregation (partition) of all three chromosomes of the cystic fibrosis type strain, Burkholderia cenocepacia J2315, proceeds from mid-cell to cell quarter positions, but that it occurs in a sequential manner, from largest chromosome to smallest. Positioning of each chromosome is specified solely by its own partition proteins. Nevertheless, the partition system of the largest chromosome appears also to play a global role in the cell cycle, by modulating the timing of initiation of replication. In addition, disrupting the partition systems of all three chromosomes induced specific cell abnormalities. Hence, although such bacteria are governed mainly by the largest, housekeeping chromosome, all the Par systems have insinuated themselves into cell cycle regulation to become indispensable for normal growth. Exploration of the underlying mechanisms should allow us to understand their full importance to bacterial life.
Collapse