1
|
Rubin M, Altwegg K, Balsiger H, Bar-Nun A, Berthelier JJ, Briois C, Calmonte U, Combi M, De Keyser J, Fiethe B, Fuselier SA, Gasc S, Gombosi TI, Hansen KC, Kopp E, Korth A, Laufer D, Le Roy L, Mall U, Marty B, Mousis O, Owen T, Rème H, Sémon T, Tzou CY, Waite JH, Wurz P. Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov-Gerasimenko. SCIENCE ADVANCES 2018; 4:eaar6297. [PMID: 29978041 PMCID: PMC6031375 DOI: 10.1126/sciadv.aar6297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/24/2018] [Indexed: 05/15/2023]
Abstract
The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer Double Focusing Mass Spectrometer on board the European Space Agency's Rosetta spacecraft detected the major isotopes of the noble gases argon, krypton, and xenon in the coma of comet 67P/Churyumov-Gerasimenko. Earlier, it was found that xenon exhibits an isotopic composition distinct from anywhere else in the solar system. However, argon isotopes, within error, were shown to be consistent with solar isotope abundances. This discrepancy suggested an additional exotic component of xenon in comet 67P/Churyumov-Gerasimenko. We show that krypton also exhibits an isotopic composition close to solar. Furthermore, we found the argon to krypton and the krypton to xenon ratios in the comet to be lower than solar, which is a necessity to postulate an addition of exotic xenon in the comet.
Collapse
Affiliation(s)
- Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Corresponding author.
| | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, CH-3012 Bern, Switzerland
| | - Hans Balsiger
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Akiva Bar-Nun
- Department of Geophysics, Tel Aviv University, Ramat-Aviv, Tel Aviv, Israel
| | - Jean-Jacques Berthelier
- Laboratoire Atmosphères, Milieux, Observations Spatiales, Institut Pierre Simon Laplace, CNRS, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Christelle Briois
- Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, UMR 6115 CNRS–Université d’Orléans, Orléans, France
| | - Ursina Calmonte
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Michael Combi
- Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109, USA
| | - Johan De Keyser
- Koninklijk Belgisch Instituut voor Ruimte-Aeronomie–Institut Royal Belge d’Aéronomie Spatiale, Ringlaan 3, B-1180 Brussels, Belgium
| | - Björn Fiethe
- Institute of Computer and Network Engineering, Technische Universität Braunschweig, Hans-Sommer-Straße 66, D-38106 Braunschweig, Germany
| | - Stephen A. Fuselier
- Space Science Directorate, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228, USA
- University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Sebastien Gasc
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Tamas I. Gombosi
- Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109, USA
| | - Kenneth C. Hansen
- Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109, USA
| | - Ernest Kopp
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Axel Korth
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Diana Laufer
- Department of Geophysics, Tel Aviv University, Ramat-Aviv, Tel Aviv, Israel
| | - Léna Le Roy
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Urs Mall
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Bernard Marty
- Centre de Recherches Pétrographiques et Géochimiques, CNRS, Université de Lorraine, 15 rue Notre Dame des Pauvres, BP 20, 54501 Vandoeuvre lès Nancy, France
| | - Olivier Mousis
- Laboratoire d’Astrophysique de Marseille, CNRS, Aix-Marseille Université, 13388 Marseille, France
| | - Tobias Owen
- Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA
| | - Henri Rème
- Institut de Recherche en Astrophysique et Planétologie, CNRS, Université Paul Sabatier, Observatoire Midi-Pyrénées, 9 Avenue du Colonel Roche, 31028 Toulouse Cedex 4, France
- Centre National d’Études Spatiales, 2 Place Maurice Quentin, 75001 Paris, France
| | - Thierry Sémon
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Chia-Yu Tzou
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Jack H. Waite
- Institute of Computer and Network Engineering, Technische Universität Braunschweig, Hans-Sommer-Straße 66, D-38106 Braunschweig, Germany
| | - Peter Wurz
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, CH-3012 Bern, Switzerland
| |
Collapse
|
3
|
Owen T, Niemann HB. The origin of Titan's atmosphere: some recent advances. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:607-615. [PMID: 19019783 DOI: 10.1098/rsta.2008.0247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
It is possible to make a consistent story for the origin of Titan's atmosphere starting with the birth of Titan in the Saturn subnebula. If we use comet nuclei as a model, Titan's nitrogen and methane could have easily been delivered by the ice that makes up approximately 50 per cent of its mass. If Titan's atmospheric hydrogen is derived from that ice, it is possible that Titan and comet nuclei are in fact made of the same protosolar ice. The noble gas abundances are consistent with relative abundances found in the atmospheres of Mars and Earth, the Sun, and the meteorites.
Collapse
Affiliation(s)
- Tobias Owen
- Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA.
| | | |
Collapse
|
4
|
Owen T, Mahaffy P, Niemann HB, Atreya S, Donahue T, Bar-Nun A, de Pater I. A low-temperature origin for the planetesimals that formed Jupiter. Nature 1999; 402:269-70. [PMID: 10580497 DOI: 10.1038/46232] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The four giant planets in the Solar System have abundances of 'metals' (elements heavier than helium), relative to hydrogen, that are much higher than observed in the Sun. In order to explain this, all models for the formation of these planets rely on an influx of solid planetesimals. It is generally assumed that these planetesimals were similar, if not identical, to the comets from the Oort cloud that we see today. Comets that formed in the region of the giant planets should not have contained much neon, argon and nitrogen, because the temperatures were too high for these volatile gases to be trapped effectively in ice. This means that the abundances of those elements on the giant planets should be approximately solar. Here we show that argon, krypton and xenon in Jupiter's atmosphere are enriched to the same extent as the other heavy elements, which suggests that the planetesimals carrying these elements must have formed at temperatures lower than predicted by present models of giant-planet formation.
Collapse
Affiliation(s)
- T Owen
- University of Hawaii, Institute for Astronomy, Honolulu 96822, USA.
| | | | | | | | | | | | | |
Collapse
|