1
|
Ajay A, Begum T, Arya A, Kumar K, Ahmad S. Global and local genomic features together modulate the spontaneous single nucleotide mutation rate. Comput Biol Chem 2024; 112:108107. [PMID: 38875896 DOI: 10.1016/j.compbiolchem.2024.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024]
Abstract
Spontaneous mutations are evolutionary engines as they generate variants for the evolutionary downstream processes that give rise to speciation and adaptation. Single nucleotide mutations (SNM) are the most abundant type of mutations among them. Here, we perform a meta-analysis to quantify the influence of selected global genomic parameters (genome size, genomic GC content, genomic repeat fraction, number of coding genes, gene count, and strand bias in prokaryotes) and local genomic features (local GC content, repeat content, CpG content and the number of SNM at CpG islands) on spontaneous SNM rates across the tree of life (prokaryotes, unicellular eukaryotes, multicellular eukaryotes) using wild-type sequence data in two different taxon classification systems. We find that the spontaneous SNM rates in our data are correlated with many genomic features in prokaryotes and unicellular eukaryotes irrespective of their sample sizes. On the other hand, only the number of coding genes was correlated with the spontaneous SNM rates in multicellular eukaryotes primarily contributed by vertebrates data. Considering local features, we notice that local GC content and CpG content significantly were correlated with the spontaneous SNM rates in the unicellular eukaryotes, while local repeat fraction is an important feature in prokaryotes and certain specific uni- and multi-cellular eukaryotes. Such predictive features of the spontaneous SNM rates often support non-linear models as the best fit compared to the linear model. We also observe that the strand asymmetry in prokaryotes plays an important role in determining the spontaneous SNM rates but the SNM spectrum does not.
Collapse
Affiliation(s)
- Akash Ajay
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Tina Begum
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Ajay Arya
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Krishan Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Drouin R, Lemieux N, Richer CL. High-resolution R-banding at the 1250-band level. III. Comparative analysis of morphologic and dynamic R-band patterns (RHG and RBG). Hereditas 2008; 114:65-77. [PMID: 2071451 DOI: 10.1111/j.1601-5223.1991.tb00554.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High-resolution human chromosomes were obtained from lymphocytes after thymidine synchronization. The block was released either with thymidine to produce GTG (G-bands by trypsin using Giemsa) and RHG (R-bands by heating using Giemsa) banding or with BrdU (5-bromo-2'-deoxyuridine) for RBG (R-bands by BrdU using Giemsa) banding. RHG and RBG band patterns are only 75 to 85% congruent. The dissimilarities increase with the band number per genome and vary from one chromosome region to another. After high-resolution RBG banding, the BrdU-substituted bands show an unequal condensation delay, which can be, according to the bands involved, very important, minimal, or even absent. The bands showing the highest degree of condensation delay are the bands replicating the latest. The GTG- and RHG-band patterns show complementary matching for about 90% of the bands. It was found that two third of the chromosome surface appears positively stained after R-banding. This suggests that more DNA is replicated during early S-phase than during late S-phase. To obtain a fully developed RBG-band pattern in 90 to 95% of harvested mitoses, a period of 4.5 hours after the removal of the blocking agent is optimal. Such a brief release period also implies that late S-phase is much shorter than early S-phase.
Collapse
Affiliation(s)
- R Drouin
- Département d'Anatomie, Faculté de Médecine, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
3
|
Holmquist GP, Ashley T. Chromosome organization and chromatin modification: influence on genome function and evolution. Cytogenet Genome Res 2006; 114:96-125. [PMID: 16825762 DOI: 10.1159/000093326] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 12/15/2005] [Indexed: 11/19/2022] Open
Abstract
Histone modifications of nucleosomes distinguish euchromatic from heterochromatic chromatin states, distinguish gene regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to focus recombination events on regions of highest gene concentrations. Four additional epigenetic mechanisms that regulate commitment of cell lineages to their differentiated states are involved in the inheritance of differentiated states, e.g., DNA methylation, RNA interference, gene repositioning between interphase compartments, and gene replication time. The number of additional mechanisms used increases with the taxon's somatic complexity. The ability of siRNA transcribed from one locus to target, in trans, RNAi-associated nucleation of heterochromatin in distal, but complementary, loci seems central to orchestration of chromatin states along chromosomes. Most genes are inactive when heterochromatic. However, genes within beta-heterochromatin actually require the heterochromatic state for their activity, a property that uniquely positions such genes as sources of siRNA to target heterochromatinization of both the source locus and distal loci. Vertebrate chromosomes are organized into permanent structures that, during S-phase, regulate simultaneous firing of replicon clusters. The late replicating clusters, seen as G-bands during metaphase and as meiotic chromomeres during meiosis, epitomize an ontological utilization of all five self-reinforcing epigenetic mechanisms to regulate the reversible chromatin state called facultative (conditional) heterochromatin. Alternating euchromatin/heterochromatin domains separated by band boundaries, and interphase repositioning of G-band genes during ontological commitment can impose constraints on both meiotic interactions and mammalian karyotype evolution.
Collapse
Affiliation(s)
- G P Holmquist
- Biology Department, City of Hope Medical Center, Duarte, CA, USA.
| | | |
Collapse
|
4
|
Mucha M, Król J, Goc A, Filipski J. Mapping candidate hotspots of meiotic recombination in segments of human DNA cloned in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 2003; 270:165-72. [PMID: 12942369 DOI: 10.1007/s00438-003-0915-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2003] [Accepted: 08/01/2003] [Indexed: 11/24/2022]
Abstract
The hotspots of meiotic recombination in the human genome can be localized by genetic techniques. The resolution of these techniques is in the range of kilobases and depends on the density of the physical markers identifying allelic variants of the chromosomal loci. We thought it would be interesting to localize these sites with higher resolution. Assuming that some human chromosomal sites conserve their propensity for recombination when cloned in yeast, we localized the hotspots of recombination in several yeast artificial chromosomes (YACs) carrying human DNA. A number of potential recombination hotspots could be identified in the clones studied. Among them there are two classes of sites that are particularly recombination prone also in human meiotic cells: sites associated with CpG islands and sites located in the vicinity of long minisatellite sequences.
Collapse
Affiliation(s)
- M Mucha
- Laboratoire de Biochimie de la Chromatine, Institut J. Monod, Université Paris VI et Paris VII, 2, Place Jussieu Tour 43, 75251, Paris, France
| | | | | | | |
Collapse
|
5
|
Abstract
Recent localization of cohesin association regions along the yeast chromatin fibre suggests that compositional variability of DNA in yeast is related to the function and organization of the chromosomal loops. The bases of the loops, where the chromatin fibre is attached to the chromosomal axis, are AT-rich, bind cohesin, and are flanked by genes transcribed convergently. The hotspots of meiotic recombination are mainly found in the GC-rich parts of the loops, 'external' with respect to the chromosomal axis, frequently in the vicinity of the promoters of divergently transcribed genes. There are two possible reasons why the regions of the hotspots of recombination were enriched in GC content during evolution. One is a biased repair of recombination intermediates, and the second is a selective advantage due to an increased chromatin accessibility, which may have the carriers of GC-enriched alleles over the carriers of AT-rich alleles.
Collapse
Affiliation(s)
- Jan Filipski
- Institut J. Monod, Laboratoire de: Biochimie de la Chromatine, 2, place Jussieu, Tour 43, 75251, Paris, France.
| | | |
Collapse
|
6
|
Abstract
Spontaneous and induced chromosome aberrations have been studied over more than a century. The resolution of detection of aberrations has depended on the improvement of available techniques. An overview on the major high lights in this area of research, from the time of solid staining to fluorescence in situ hybridization technique is presented in this review.
Collapse
Affiliation(s)
- A T Natarajan
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Center, Wassenaarseweg 72, Leiden, The Netherlands.
| |
Collapse
|
7
|
Martínez-López W, Bonomi R, Folle GA, Drets ME. Microphotometric scanning of chromatid gaps and breaks induced by AluI and BamHI in Chinese hamster ovary cells. ACTA ACUST UNITED AC 1996. [DOI: 10.1590/s0100-84551996000400007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wilner Martínez-López
- Instituto de Investigaciones Biológicas Clemente Estable, Uruguay; Facultad de Ciencias, Uruguay
| | - Rossana Bonomi
- Instituto de Investigaciones Biológicas Clemente Estable, Uruguay
| | - Gustavo A. Folle
- Instituto de Investigaciones Biológicas Clemente Estable, Uruguay
| | - Máximo E. Drets
- Instituto de Investigaciones Biológicas Clemente Estable, Uruguay
| |
Collapse
|
8
|
Drouin R, Holmquist GP, Richer CL. High-resolution replication bands compared with morphologic G- and R-bands. ADVANCES IN HUMAN GENETICS 1994; 22:47-115. [PMID: 7762454 DOI: 10.1007/978-1-4757-9062-7_2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R Drouin
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010-0269, USA
| | | | | |
Collapse
|
9
|
Abstract
Several lines of evidence are presented which suggest that sequence G + C content and recombination frequency are related in mammals: (i) chromosome G + C content is positively correlated to chiasmata density; (ii) the non-pairing region of the Y chromosome has one of the lowest G + C contents of any chromosomal segment; (iii) a reduction in the rate of recombination at several loci is mirrored by a decrease in G + C content; and (iv) when compared with humans, mice have a lower variance in chiasmata density which is reflected in a lower variance in G + C content. The observed relation between recombination frequency and sequence G + C content provides an elegant explanation of why gene density is higher in G + C rich isochores than in other parts of the genome, and why long interspersed elements (LINES) are exclusive to G + C poor isochores. However, the cause of the relation is as yet unknown. Several possibilities are considered, including gene conversion.
Collapse
Affiliation(s)
- A Eyre-Walker
- Institute of Cell Animal and Population Biology, University of Edinburgh, U.K
| |
Collapse
|
10
|
Abstract
The mammalian chromosome is longitudinally heterogeneous in structure and function and this is the basis for the specific banding patterns produced by various chromosome staining techniques. The two most frequently used techniques are G, or Giemsa banding and R, or reverse banding. Each type of stained band is characterised by variations in gene density, time of replication, base composition, density of repeat sequences, and chromatin packaging. It is increasingly apparent that R and G bands, which are complementary to each other, represent separate compartments of the euchromatic human genome, with R bands containing the vast majority of genes. R bands are also more GC-rich, contain a higher density of Alu repeats, and replicate earlier in S phase, than G bands. These properties may be interdependent and may have coevolved.
Collapse
Affiliation(s)
- J M Craig
- MRC Human Genetics Unit, Western General Hospital, Edinburgh
| | | |
Collapse
|
11
|
Abstract
A diploid human genome contains approximately six billion nucleotides. This enormous amount of genetic information can be replicated with great accuracy in only a few hours. However, because DNA strands are oriented antiparallel while DNA polymerization only occurs in the 5'----3' direction, semi-conservative replication of double-stranded DNA is an asymmetric process, i.e., there is a leading and a lagging strand. This provides a considerable opportunity for non-random error rates, because the architecture of the two strands as well as the DNA polymerases that replicate them may be different. In addition, the proteins that start or finish chains may well be different from those that perform the bulk of chain elongation. Furthermore, while replication fidelity depends on the absolute and relative concentrations of the four deoxyribonucleotide precursors, these are not equal in vivo, not constant throughout the cell cycle, and not necessarily equivalent in all cell types. Finally, the fidelity of DNA synthesis is sequence-dependent and the eukaryotic nuclear genome is a heterogeneous substrate. It contains repetitive and non-repetitive sequences and can actually be considered as two subgenomes that differ in nucleotide composition and gene content and that replicate at different times. The effects that each of these asymmetries may have on error rates during replication of the eukaryotic genome are discussed.
Collapse
Affiliation(s)
- T A Kunkel
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| |
Collapse
|
12
|
Abstract
Retroviruses have the ability to integrate into the genome of their host, in many cases with little apparent sequence or site specificity. However, relatively few studies have addressed more general features of chromosomal integration. In this study we directly visualized the chromosomal organization of three representative endogenous retroviruses by in situ hybridization. Because there are 50-1000 copies of each of these retroviruses in the genome, it was possible to evaluate repeated integration events. Each retroviral sequence exhibited a unique and markedly different integration pattern. In order to characterize more precisely the chromosomal domains targeted by each retrovirus, later replicating domains were differentially labeled. Additionally, prototypic SINES and LINES (short and long interspersed reiterated sequences), which are inhomogeneously distributed on chromosome arms, were simultaneously detected. Retroviral copies of greater than or equal to 2 kb were found (i) exclusively in a discrete set of later replicating domains, most of which have the staining characteristics of constitutive heterochromatin, (ii) widely represented in disparate types of chromosome domains, or (iii) almost completely confined to CpG Alu-rich regions that are known to be early replicating. Retroviral elements in Alu-rich domains would be expected to be actively transcribed in all cells. Surprisingly, hybridization to blots of brain RNA showed an approximately 25 fold lower level of transcripts from these Alu associated elements than from retroviral sequences restricted to later replicating, heterochromatic domains. Retroviral insertions may subvert more typical transcriptional characteristics of a domain. The present results indicate that there are highly specific integration patterns for each endogenous retrovirus that do not readily relate to their sequence or particle classification. Each host genome may utilize these elements for contrary, and possibly beneficial functions.
Collapse
Affiliation(s)
- D Taruscio
- Yale Medical School, New Haven, CT 06510
| | | |
Collapse
|