1
|
Roberti A, Chaffey LE, Greaves DR. NF-κB Signaling and Inflammation-Drug Repurposing to Treat Inflammatory Disorders? BIOLOGY 2022; 11:372. [PMID: 35336746 PMCID: PMC8945680 DOI: 10.3390/biology11030372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Abstract
NF-κB is a central mediator of inflammation, response to DNA damage and oxidative stress. As a result of its central role in so many important cellular processes, NF-κB dysregulation has been implicated in the pathology of important human diseases. NF-κB activation causes inappropriate inflammatory responses in diseases including rheumatoid arthritis (RA) and multiple sclerosis (MS). Thus, modulation of NF-κB signaling is being widely investigated as an approach to treat chronic inflammatory diseases, autoimmunity and cancer. The emergence of COVID-19 in late 2019, the subsequent pandemic and the huge clinical burden of patients with life-threatening SARS-CoV-2 pneumonia led to a massive scramble to repurpose existing medicines to treat lung inflammation in a wide range of healthcare systems. These efforts continue and have proven to be controversial. Drug repurposing strategies are a promising alternative to de novo drug development, as they minimize drug development timelines and reduce the risk of failure due to unexpected side effects. Different experimental approaches have been applied to identify existing medicines which inhibit NF-κB that could be repurposed as anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; (A.R.); (L.E.C.)
| |
Collapse
|
2
|
Hussman JP, Beecham AH, Schmidt M, Martin ER, McCauley JL, Vance JM, Haines JL, Pericak-Vance MA. GWAS analysis implicates NF-κB-mediated induction of inflammatory T cells in multiple sclerosis. Genes Immun 2016; 17:305-12. [PMID: 27278126 PMCID: PMC4956564 DOI: 10.1038/gene.2016.23] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
To identify genes and biologically relevant pathways associated with risk to develop multiple sclerosis (MS), the Genome-Wide Association Studies noise reduction method (GWAS-NR) was applied to MS genotyping data. Regions of association were defined based on the significance of linkage disequilibrium blocks. Candidate genes were cross-referenced based on a review of current literature, with attention to molecular function and directly interacting proteins. Supplementary annotations and pathway enrichment scores were generated using The Database for Annotation, Visualization and Integrated Discovery. The candidate set of 220 MS susceptibility genes prioritized by GWAS-NR was highly enriched with genes involved in biological pathways related to positive regulation of cell, lymphocyte and leukocyte activation (P=6.1E-15, 1.2E-14 and 5.0E-14, respectively). Novel gene candidates include key regulators of NF-κB signaling and CD4+ T helper type 1 (Th1) and T helper type 17 (Th17) lineages. A large subset of MS candidate genes prioritized by GWAS-NR were found to interact in a tractable pathway regulating the NF-κB-mediated induction and infiltration of pro-inflammatory Th1/Th17 T-cell lineages, and maintenance of immune tolerance by T-regulatory cells. This mechanism provides a biological context that potentially links clinical observations in MS to the underlying genetic landscape that may confer susceptibility.
Collapse
Affiliation(s)
| | - A H Beecham
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - M Schmidt
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - E R Martin
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - J L McCauley
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - J M Vance
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - J L Haines
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - M A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|