1
|
Hernandez-Olmos V, Heering J, Planz V, Liu T, Kaps A, Rajkumar R, Gramzow M, Kaiser A, Schubert-Zsilavecz M, Parnham MJ, Windbergs M, Steinhilber D, Proschak E. First Structure-Activity Relationship Study of Potent BLT2 Agonists as Potential Wound-Healing Promoters. J Med Chem 2020; 63:11548-11572. [PMID: 32946232 DOI: 10.1021/acs.jmedchem.0c00588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first potent leukotriene B4 (LTB4) receptor type 2 (BLT2) agonists, endogenous 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT), and synthetic CAY10583 (CAY) have been recently described to accelerate wound healing by enhanced keratinocyte migration and indirect stimulation of fibroblast activity in diabetic rats. CAY represents a very valuable starting point for the development of novel wound-healing promoters. In this work, the first structure-activity relationship study for CAY scaffold-based BLT2 agonists is presented. The newly prepared derivatives showed promising in vitro wound-healing activity.
Collapse
Affiliation(s)
- Victor Hernandez-Olmos
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Jan Heering
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Viktoria Planz
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Ting Liu
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Alexander Kaps
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Rinusha Rajkumar
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Matthias Gramzow
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Michael J Parnham
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Dieter Steinhilber
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Ewgenij Proschak
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
2
|
A 5‑lipoxygenase-specific sequence motif impedes enzyme activity and confers dependence on a partner protein. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:543-551. [PMID: 30291962 DOI: 10.1016/j.bbalip.2018.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/31/2018] [Accepted: 09/30/2018] [Indexed: 11/22/2022]
Abstract
Leukotrienes (LT) are lipid mediators of the inflammatory response that play key roles in diseases such as asthma and atherosclerosis. The precursor leukotriene A4 (LTA4) is synthesized from arachidonic acid (AA) by 5‑lipoxygenase (5-LOX), a membrane-associated enzyme, with the help of 5‑lipoxygenase-activating protein (FLAP), a nuclear transmembrane protein. In lipoxygenases the main chain carboxylate of the C-terminus is a ligand for the non-heme iron and thus part of the catalytic center. We investigated the role of a lysine-rich sequence (KKK653-655) 20 amino acids upstream of the C-terminus unique to 5-LOX that might displace the main-chain carboxylate in the iron coordination sphere. A 5-LOX mutant in which KKK653-655 is replaced by ENL was transfected into HEK293 cells in the absence and presence of FLAP. This mutant gave ~20-fold higher 5-LOX product levels in stimulated HEK cells relative to the wild-type 5-LOX. Co-expression of the enzymes with FLAP led to an equalization of 5-LOX products detected, with wild-type 5-LOX product levels increased and those from the mutant enzyme decreased. These data suggest that the KKK motif limits 5-LOX activity and that this attenuated activity must be compensated by the presence of FLAP as a partner protein for effective LT biosynthesis.
Collapse
|