1
|
Szöllősi AG, Oláh A, Lisztes E, Griger Z, Tóth BI. Pruritus: A Sensory Symptom Generated in Cutaneous Immuno-Neuronal Crosstalk. Front Pharmacol 2022; 13:745658. [PMID: 35321329 PMCID: PMC8937025 DOI: 10.3389/fphar.2022.745658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Pruritus or itch generated in the skin is one of the most widespread symptoms associated with various dermatological and systemic (immunological) conditions. Although many details about the molecular mechanisms of the development of both acute and chronic itch were uncovered in the last 2 decades, our understanding is still incomplete and the clinical management of pruritic conditions is one of the biggest challenges in daily dermatological practice. Recent research revealed molecular interactions between pruriceptive sensory neurons and surrounding cutaneous cell types including keratinocytes, as well as resident and transient cells of innate and adaptive immunity. Especially in inflammatory conditions, these cutaneous cells can produce various mediators, which can contribute to the excitation of pruriceptive sensory fibers resulting in itch sensation. There also exists significant communication in the opposite direction: sensory neurons can release mediators that maintain an inflamed, pruritic tissue-environment. In this review, we summarize the current knowledge about the sensory transduction of pruritus detailing the local intercellular interactions that generate itch. We especially emphasize the role of various pruritic mediators in the bidirectional crosstalk between cutaneous non-neuronal cells and sensory fibers. We also list various dermatoses and immunological conditions associated with itch, and discuss the potential immune-neuronal interactions promoting the development of pruritus in the particular diseases. These data may unveil putative new targets for antipruritic pharmacological interventions.
Collapse
Affiliation(s)
- Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Griger
- Division of Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Balázs István Tóth,
| |
Collapse
|
2
|
Lee K, Choi YI, Im ST, Hwang SM, Lee HK, Im JZ, Kim YH, Jung SJ, Park CK. Riboflavin Inhibits Histamine-Dependent Itch by Modulating Transient Receptor Potential Vanilloid 1 (TRPV1). Front Mol Neurosci 2021; 14:643483. [PMID: 34220447 PMCID: PMC8249943 DOI: 10.3389/fnmol.2021.643483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Riboflavin, also known as vitamin B2, isfound in foods and is used as a dietary supplement. Its deficiency (also called ariboflavinosis) results in some skin lesions and inflammations, such as stomatitis, cheilosis, oily scaly skin rashes, and itchy, watery eyes. Various therapeutic effects of riboflavin, such as anticancer, antioxidant, anti-inflammatory, and anti-nociceptive effects, are well known. Although some studies have identified the clinical effect of riboflavin on skin problems, including itch and inflammation, its underlying mechanism of action remains unknown. In this study, we investigated the molecular mechanism of the effects of riboflavin on histamine-dependent itch based on behavioral tests and electrophysiological experiments. Riboflavin significantly reduced histamine-induced scratching behaviors in mice and histamine-induced discharges in single-nerve fiber recordings, while it did not alter motor function in the rotarod test. In cultured dorsal root ganglion (DRG) neurons, riboflavin showed a dose-dependent inhibitory effect on the histamine- and capsaicin-induced inward current. Further tests wereconducted to determine whether two endogenous metabolites of riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), have similar effects to those of riboflavin. Here, FMN, but not FAD, significantly inhibited capsaicin-induced currents and itching responses caused by histamine. In addition, in transient receptor potential vanilloid 1 (TRPV1)-transfected HEK293 cells, both riboflavin and FMN blocked capsaicin-induced currents, whereas FAD did not. These results revealed that riboflavin inhibits histamine-dependent itch by modulating TRPV1 activity. This study will be helpful in understanding how riboflavin exerts antipruritic effects and suggests that it might be a useful drug for the treatment of histamine-dependent itch.
Collapse
Affiliation(s)
- Kihwan Lee
- Tooth-Periodontium Complex Medical Research Center (MRC), Department of Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Young In Choi
- Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Sang-Taek Im
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Han-Kyu Lee
- Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Jay-Zoon Im
- Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Sung Jun Jung
- Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
3
|
Activation of MrgprA3 and MrgprC11 on Bladder-Innervating Afferents Induces Peripheral and Central Hypersensitivity to Bladder Distension. J Neurosci 2021; 41:3900-3916. [PMID: 33727332 DOI: 10.1523/jneurosci.0033-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding the sensory mechanisms innervating the bladder is paramount to developing efficacious treatments for chronic bladder hypersensitivity conditions. The contribution of Mas-gene-related G protein-coupled receptors (Mrgpr) to bladder signaling is currently unknown. Using male and female mice, we show with single-cell RT-PCR that subpopulations of DRG neurons innervating the mouse bladder express MrgprA3 (14%) and MrgprC11 (38%), either individually or in combination, with high levels of coexpression with Trpv1 (81%-89%). Calcium imaging studies demonstrated MrgprA3 and MrgprC11 agonists (chloroquine, BAM8-22, and neuropeptide FF) activated subpopulations of bladder-innervating DRG neurons, showing functional evidence of coexpression between MrgprA3, MrgprC11, and TRPV1. In ex vivo bladder-nerve preparations, chloroquine, BAM8-22, and neuropeptide FF all evoked mechanical hypersensitivity in subpopulations (20%-41%) of bladder afferents. These effects were absent in recordings from Mrgpr-clusterΔ-/- mice. In vitro whole-cell patch-clamp recordings showed that application of an MrgprA3/C11 agonist mixture induced neuronal hyperexcitability in 44% of bladder-innervating DRG neurons. Finally, in vivo instillation of an MrgprA3/C11 agonist mixture into the bladder of WT mice induced a significant activation of dorsal horn neurons within the lumbosacral spinal cord, as quantified by pERK immunoreactivity. This MrgprA3/C11 agonist-induced activation was particularly apparent within the superficial dorsal horn and the sacral parasympathetic nuclei of WT, but not Mrgpr-clusterΔ-/- mice. This study demonstrates, for the first time, functional expression of MrgprA3 and MrgprC11 in bladder afferents. Activation of these receptors triggers hypersensitivity to distension, a critically valuable factor for therapeutic target development.SIGNIFICANCE STATEMENT Determining how bladder afferents become sensitized is the first step in finding effective treatments for common urological disorders such as overactive bladder and interstitial cystitis/bladder pain syndrome. Here we show that two of the key receptors, MrgprA3 and MrgprC11, that mediate itch from the skin are also expressed on afferents innervating the bladder. Activation of these receptors results in sensitization of bladder afferents, resulting in sensory signals being sent into the spinal cord that prematurely indicate bladder fullness. Targeting bladder afferents expressing MrgprA3 or MrgprC11 and preventing their sensitization may provide a novel approach for treating overactive bladder and interstitial cystitis/bladder pain syndrome.
Collapse
|
4
|
Misery L. Pruriplastic Itch-A Novel Pathogenic Concept in Chronic Pruritus. Front Med (Lausanne) 2021; 7:615118. [PMID: 33553207 PMCID: PMC7854543 DOI: 10.3389/fmed.2020.615118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
The International Association for the Study of Pain (IASP) defined three descriptors for pain: nociceptive pain is “pain that arises from actual or threatened damage to non neural tissue and is due to the activation of nociceptors”; neuropathic pain is “pain caused by a lesion or disease of the somatosensory nervous system”; and nociplastic pain is “pain that arises from altered nociception despite no clear evidence of actual or threatened tissue damage causing the activation of peripheral nociceptors or evidence for disease or lesion of the somatosensory system causing the pain.” Based on clinical and pathophysiological arguments, a similar definition of “pruriplastic pruritus” should be made. Pruriplastic pruritus would include psychogenic pruritus, as well as some cases of pruritus ani, vulvar pruritus, sensitive skin or other poorly understood cases of pruritus. This new descriptor of itch could serve as systematic screening for altered pruriceptive function in patients who suffer from chronic itch and it may also help in defining better tailored treatment by identifying patients who are likely to respond better to centrally rather than to peripherally targeted therapies.
Collapse
|
5
|
Nakahara T, Kido‐Nakahara M, Tsuji G, Furue M. Basics and recent advances in the pathophysiology of atopic dermatitis. J Dermatol 2020; 48:130-139. [DOI: 10.1111/1346-8138.15664] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Takeshi Nakahara
- Department of DermatologyGraduate School of Medical SciencesKyushu University FukuokaJapan
- Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University FukuokaJapan
| | - Makiko Kido‐Nakahara
- Department of DermatologyGraduate School of Medical SciencesKyushu University FukuokaJapan
| | - Gaku Tsuji
- Department of DermatologyGraduate School of Medical SciencesKyushu University FukuokaJapan
- Research and Clinical Center for Yusho and Dioxin Kyushu University Hospital Fukuoka Japan
| | - Masutaka Furue
- Department of DermatologyGraduate School of Medical SciencesKyushu University FukuokaJapan
- Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University FukuokaJapan
- Research and Clinical Center for Yusho and Dioxin Kyushu University Hospital Fukuoka Japan
| |
Collapse
|
6
|
Grundy L, Caldwell A, Garcia Caraballo S, Erickson A, Schober G, Castro J, Harrington AM, Brierley SM. Histamine induces peripheral and central hypersensitivity to bladder distension via the histamine H1 receptor and TRPV1. Am J Physiol Renal Physiol 2020; 318:F298-F314. [DOI: 10.1152/ajprenal.00435.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a common chronic pelvic disorder with sensory symptoms of urinary urgency, frequency, and pain, indicating a key role for hypersensitivity of bladder-innervating sensory neurons. The inflammatory mast cell mediator histamine has long been implicated in IC/BPS, yet the direct interactions between histamine and bladder afferents remain unclear. In the present study, we show, using a mouse ex vivo bladder afferent preparation, that intravesical histamine enhanced the mechanosensitivity of subpopulations of afferents to bladder distension. Histamine also recruited “silent afferents” that were previously unresponsive to bladder distension. Furthermore, in vivo intravesical histamine enhanced activation of dorsal horn neurons within the lumbosacral spinal cord, indicating increased afferent signaling in the central nervous system. Quantitative RT-PCR revealed significant expression of histamine receptor subtypes ( Hrh1– Hrh3) in mouse lumbosacral dorsal root ganglia (DRG), bladder detrusor smooth muscle, mucosa, and isolated urothelial cells. In DRG, Hrh1 was the most abundantly expressed. Acute histamine exposure evoked Ca2+ influx in select populations of DRG neurons but did not elicit calcium transients in isolated primary urothelial cells. Histamine-induced mechanical hypersensitivity ex vivo was abolished in the presence of the histamine H1 receptor antagonist pyrilamine and was not present in preparations from mice lacking transient receptor potential vanilloid 1 (TRPV1). Together, these results indicate that histamine enhances the sensitivity of bladder afferents to distension via interactions with histamine H1 receptor and TRPV1. This hypersensitivity translates to increased sensory input and activation in the spinal cord, which may underlie the symptoms of bladder hypersensitivity and pain experienced in IC/BPS.
Collapse
Affiliation(s)
- Luke Grundy
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Ashlee Caldwell
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Sonia Garcia Caraballo
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Andelain Erickson
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Gudrun Schober
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Joel Castro
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea M. Harrington
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Pain, Dryness, and Itch Sensations in Eye Surface Disorders Are Defined By a Balance Between Inflammation and Sensory Nerve Injury. Cornea 2019; 38 Suppl 1:S11-S24. [DOI: 10.1097/ico.0000000000002116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Nakahara T, Kido-Nakahara M, Furue M. Potential Role of Endothelin-1 in Atopic Dermatitis. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-00206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Abstract
Phototherapy is widely used to treat inflammatory skin diseases such as psoriasis and atopic dermatitis. Repeated suberythemogenic doses of UV-light reduce inflammation in these diseases and ultimately may lead to a complete disappearance of cutaneous symptoms for weeks or months. Chronic pruritus is an important and highly distressing symptom of many of these inflammatory skin diseases. Interestingly, pruritus is also reduced or completely abolished by UV-treatment of psoriasis and atopic dermatitis, and sometimes reduction of pruritus is the first indication for skin improvement by phototherapy. The cutaneous nervous system is an integral part of skin anatomy, and free nerve endings of sensory cutaneous nerve fibers reach up into the epidermis getting in close contact with epidermal cells and mediators from epidermal cells released into the intercellular space. Stimulation of “pruriceptors” within this group of sensory nerve fibers generates a neuronal signal eventually transmitted via the dorsal root and the spinal cord to the brain, where it is recognized as “itch”. UV-light may directly affect cutaneous sensory nerve fibers or, via the release of mediators from cells within the skin, indirectly modulate their function as well as the transmission of itch to the central nervous system inducing the clinically recognized antipruritic effect of phototherapy.
Collapse
Affiliation(s)
- Franz J Legat
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| |
Collapse
|
10
|
Steinhoff M, Schmelz M, Szabó IL, Oaklander AL. Clinical presentation, management, and pathophysiology of neuropathic itch. Lancet Neurol 2018; 17:709-720. [PMID: 30033061 DOI: 10.1016/s1474-4422(18)30217-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 05/15/2018] [Accepted: 06/01/2018] [Indexed: 12/19/2022]
Abstract
Unlike conventional itch, neuropathic itch develops in normal skin from excess peripheral firing or dampened central inhibition of itch pathway neurons. Neuropathic itch is a symptom of the same central and peripheral nervous system disorders that cause neuropathic pain, such as sensory polyneuropathy, radiculopathy, herpes zoster, stroke, or multiple sclerosis, and lesion location affects symptoms more than aetiology. The causes of neuropathic itch are heterogeneous, and thus diagnosis is based primarily on recognising characteristic, disease-specific clinical presentations. However, the diagnosis of neuropathic itch is challenging, different subforms exist (eg, focal vs widespread, peripheral vs central), and the mechanisms of neuropathic itch are poorly understood, resulting in reduced treatment availability. Currently available strategies include treating or preventing causal diseases, such as diabetes or herpes zoster, and topical or systemic medications that calm excess neuronal firing. Discovery of itch mediators such as gastrin releasing peptide, receptors (eg, neurokinin-1), and pathways (eg, Janus kinases) might encourage much needed new research into targeted treatments of neuropathic itch.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; HMC Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medicine-Qatar, Doha, Qatar; College of Medicine, Qatar University, Medical School, Doha, Qatar.
| | - Martin Schmelz
- Department of Experimental Pain Research, CBTM Mannheim, Heidelberg University, Mannheim, Germany
| | - Imre Lőrinc Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anne Louise Oaklander
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neuropathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
|
12
|
Furue M, Yamamura K, Kido‐Nakahara M, Nakahara T, Fukui Y. Emerging role of interleukin-31 and interleukin-31 receptor in pruritus in atopic dermatitis. Allergy 2018; 73:29-36. [PMID: 28670717 DOI: 10.1111/all.13239] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
Atopic dermatitis (AD) is a chronic or chronically relapsing, eczematous, severely pruritic skin disorder associated with skin barrier dysfunction. The lesional skin of AD exhibits T helper 2 (TH 2)-deviated immune reactions. Interleukin-31 (IL-31), preferentially produced from TH 2 cells, is a potent pruritogenic cytokine, and its systemic and local administration induces scratching behavior in rodents, dogs and monkeys. Recent clinical trials have revealed that administration of an anti-IL-31 receptor antibody significantly alleviates pruritus in patients with AD. In this review, we summarize recent topics related to IL-31 and its receptor with special references to atopic itch.
Collapse
Affiliation(s)
- M. Furue
- Department of Dermatology and Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Research and clinical center for Yusho and dioxin Kyushu University Hospital Kyushu University Fukuoka Japan
| | - K. Yamamura
- Department of Dermatology and Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - M. Kido‐Nakahara
- Department of Dermatology and Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - T. Nakahara
- Department of Dermatology and Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Y. Fukui
- Division of Immunogenetics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
- Research Center for Advanced Immunology Kyushu University Fukuoka Japan
| |
Collapse
|
13
|
Abstract
Itch is a prevalent somatosensory symptom that can be highly disabling, because it is likely to draw attention and, as a result, may interfere with the performance of daily activities. Yet, research experimentally investigating attention to itch is lacking. In this study we aimed to investigate attentional processing of itch using multiple behavioral attention tasks. Forty-one healthy participants performed (1) a modified Stroop task with itch-related words, (2) a dot-probe task with itch-related pictures, and (3) a recently developed somatosensory attention task in which the effect of experimentally induced itch on the localization of visual targets was examined. Additionally, a number of self-report questionnaires related to somatosensory attentional processing were administered. Results indicated that participants’ attention was biased toward itch-related words and pictures assessed by means of the dot-probe and modified Stroop task, respectively. For the somatosensory attention task, results showed that itch did not significantly influence the allocation of attention. However, when taking into account the time course of attention during the itch stimulus, data suggested that participants tended to disengage attention away during the itch stimulus. This is the first study that indicates an attentional bias for itch, using methods that have previously been validated for other sensations such as pain. In addition, the newly developed somatosensory attention task may reflect the time course of attention toward a tonic itch stimulus.
Collapse
|
14
|
|
15
|
Beiteke U, Bigge S, Reichenberger C, Gralow I. [Pain and pain management in dermatology]. J Dtsch Dermatol Ges 2015; 13:967-89. [PMID: 26408456 DOI: 10.1111/ddg.10_12822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Beiteke U, Bigge S, Reichenberger C, Gralow I. Pain and pain management in dermatology. J Dtsch Dermatol Ges 2015; 13:967-87. [DOI: 10.1111/ddg.12822] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Ingrid Gralow
- Department of Pain Medicine; Münster University Hospital
| |
Collapse
|