Cui T, Zhang L, Wang X, He ZG. Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis.
BMC Genomics 2009;
10:118. [PMID:
19298676 PMCID:
PMC2671525 DOI:
10.1186/1471-2164-10-118]
[Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 03/19/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND
Analysis of the pathogen interactome is a powerful approach for dissecting potential signal transduction and virulence pathways. It also offers opportunities for exploring new drug targets.
RESULTS
In this study, a protein-protein interaction (PPI) network of Mycobacterium tuberculosis H37Rv was constructed using a homogenous protein mapping method, which has shown molecular chaperones, ribosomal proteins and ABC transporters to be highly interconnected proteins. A further analysis of this network unraveled the function of hypothetical proteins as well as a potential signaling pathway. A hypothetical protein, Rv2752c, which was linked to a metal cation-transporting ATPase, was characterized as a metal-beta-lactamase, through domain analysis in combination with an in vitro activity experiment. A second hypothetical protein, Rv1354c, and an unknown protein kinase, PknK, interacted with a similar group of inner membrane-associated ABC transporters in the PPI network. The interactions of Rv1354 with these proteins were also confirmed by a further bacterial two-hybrid analysis. According to protein domain structures, the unique M. tuberculosis Rv1354c gene was proposed, for the first time, to be responsible for the turnover of cyclic-di-GMP, a second messenger molecule in this bacterium. A further structure-based inhibitors screening for Rv1354c was also performed in silicon.
CONCLUSION
We constructed a comprehensive protein-protein interaction network for M. tuberculosis consisting of 738 proteins and 5639 interaction pairs. Our analysis unraveled the function of hypothetical proteins as well as a potential signaling pathway. The group of ABC transporters, PknK, and Rv1354c were proposed to constitute a potential membrane-associated signaling pathway that cooperatively responds to environmental stresses in M. tuberculosis. The study therefore provides valuable clues in exploring new signaling proteins, virulence pathways, and drug targets.
Collapse