1
|
Sánchez-García L, Carrizo D, Lezcano MÁ, Moreno-Paz M, Aeppli C, García-Villadangos M, Prieto-Ballesteros O, Demergasso C, Chong G, Parro V. Time-Integrative Multibiomarker Detection in Triassic-Jurassic Rocks from the Atacama Desert: Relevance to the Search for Basic Life Beyond Earth. ASTROBIOLOGY 2021; 21:1421-1437. [PMID: 34551267 DOI: 10.1089/ast.2020.2339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Detecting evidence of life on other planetary bodies requires a certain understanding of known biomarkers and their chemical nature, preservation potential, or biological specificity. In a planetary search for life, carbonates are of special interest due to their known association with life as we know it. On Earth, carbonates serve as an invaluable paleogeochemical archive of fossils of up to billions of years old. Here, we investigated biomarker profiles on three Chilean Triassic-Jurassic sedimentary records regarding our search for signs of past and present life over ∼200 Ma. A multianalytical platform that combines lipid-derived biomarkers, metaproteomics, and a life detector chip (LDChip) is considered in the detection of biomolecules with different perdurability and source-diagnosis potential. The combined identification of proteins with positive LDChip inmunodetections provides metabolic information and taxonomic affiliation of modern/subrecent biosignatures. Molecular and isotopic analysis of more perdurable hydrocarbon cores allows for the identification of general biosources and dominant autotrophic pathways over time, as well as recreation of prevailing redox conditions over ∼200 Ma. We demonstrate how extraterrestrial life detection can benefit from the use of different biomarkers to overcome diagnosis limitations due to a lack of specificity and/or alteration over time. Our findings have implications for future astrobiological missions to Mars.
Collapse
Affiliation(s)
- Laura Sánchez-García
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Daniel Carrizo
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - María Ángeles Lezcano
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Christoph Aeppli
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | | | | | - Cecilia Demergasso
- Department of Geological Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Guillermo Chong
- Department of Geological Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Victor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| |
Collapse
|
2
|
Iniesto M, Moreira D, Reboul G, Deschamps P, Benzerara K, Bertolino P, Saghaï A, Tavera R, López-García P. Core microbial communities of lacustrine microbialites sampled along an alkalinity gradient. Environ Microbiol 2020; 23:51-68. [PMID: 32985763 DOI: 10.1111/1462-2920.15252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/26/2020] [Accepted: 09/23/2020] [Indexed: 11/28/2022]
Abstract
Microbialites are usually carbonate-rich sedimentary rocks formed by the interplay of phylogenetically and metabolically complex microbial communities with their physicochemical environment. Yet, the biotic and abiotic determinants of microbialite formation remain poorly constrained. Here, we analysed the structure of prokaryotic and eukaryotic communities associated with microbialites occurring in several crater lakes of the Trans-Mexican volcanic belt along an alkalinity gradient. Microbialite size and community structure correlated with lake physicochemical parameters, notably alkalinity. Although microbial community composition varied across lake microbialites, major taxa-associated functions appeared quite stable with both, oxygenic and anoxygenic photosynthesis and, to less extent, sulphate reduction, as major putative carbonatogenic processes. Despite interlake microbialite community differences, we identified a microbial core of 247 operational taxonomic units conserved across lake microbialites, suggesting a prominent ecological role in microbialite formation. This core mostly encompassed Cyanobacteria and their typical associated taxa (Bacteroidetes, Planctomycetes) and diverse anoxygenic photosynthetic bacteria, notably Chloroflexi, Alphaproteobacteria (Rhodobacteriales, Rhodospirilalles), Gammaproteobacteria (Chromatiaceae) and minor proportions of Chlorobi. The conserved core represented up to 40% (relative abundance) of the total community in lakes Alchichica and Atexcac, displaying the highest alkalinities and the most conspicuous microbialites. Core microbialite communities associated with carbonatogenesis might be relevant for inorganic carbon sequestration purposes.
Collapse
Affiliation(s)
- Miguel Iniesto
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Guillaume Reboul
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Philippe Deschamps
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Paola Bertolino
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Aurélien Saghaï
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France.,Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rosaluz Tavera
- Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, DF Mexico, Mexico
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
3
|
Proemse BC, Eberhard RS, Sharples C, Bowman JP, Richards K, Comfort M, Barmuta LA. Stromatolites on the rise in peat-bound karstic wetlands. Sci Rep 2017; 7:15384. [PMID: 29133809 PMCID: PMC5684344 DOI: 10.1038/s41598-017-15507-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/27/2017] [Indexed: 02/01/2023] Open
Abstract
Stromatolites are the oldest evidence for life on Earth, but modern living examples are rare and predominantly occur in shallow marine or (hyper-) saline lacustrine environments, subject to exotic physico-chemical conditions. Here we report the discovery of living freshwater stromatolites in cool-temperate karstic wetlands in the Giblin River catchment of the UNESCO-listed Tasmanian Wilderness World Heritage Area, Australia. These stromatolites colonize the slopes of karstic spring mounds which create mildly alkaline (pH of 7.0-7.9) enclaves within an otherwise uniformly acidic organosol terrain. The freshwater emerging from the springs is Ca-HCO3 dominated and water temperatures show no evidence of geothermal heating. Using 16 S rRNA gene clone library analysis we revealed that the bacterial community is dominated by Cyanobacteria, Alphaproteobacteria and an unusually high proportion of Chloroflexi, followed by Armatimonadetes and Planctomycetes, and is therefore unique compared to other living examples. Macroinvertebrates are sparse and snails in particular are disadvantaged by the development of debilitating accumulations of carbonate on their shells, corroborating evidence that stromatolites flourish under conditions where predation by metazoans is suppressed. Our findings constitute a novel habitat for stromatolites because cool-temperate freshwater wetlands are not a conventional stromatolite niche, suggesting that stromatolites may be more common than previously thought.
Collapse
Affiliation(s)
- Bernadette C Proemse
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
- Australian Centre for Research on Separation Science, University of Tasmania, Tasmania, 7001, Australia
| | - Rolan S Eberhard
- Department of Primary Industries, Parks, Water & Environment, GPO Box 44, Hobart, Tasmania, 7001, Australia.
| | - Chris Sharples
- Geography and Spatial Science, University of Tasmania, Private Bag 76, Hobart, Tasmania, 7001, Australia
| | - John P Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 98, Hobart, Tasmania, 7001, Australia
| | - Karen Richards
- Department of Primary Industries, Parks, Water & Environment, GPO Box 44, Hobart, Tasmania, 7001, Australia
| | - Michael Comfort
- Department of Primary Industries, Parks, Water & Environment, GPO Box 44, Hobart, Tasmania, 7001, Australia
| | - Leon A Barmuta
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
4
|
Koo H, Mojib N, Hakim JA, Hawes I, Tanabe Y, Andersen DT, Bej AK. Microbial Communities and Their Predicted Metabolic Functions in Growth Laminae of a Unique Large Conical Mat from Lake Untersee, East Antarctica. Front Microbiol 2017; 8:1347. [PMID: 28824553 PMCID: PMC5543034 DOI: 10.3389/fmicb.2017.01347] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/03/2017] [Indexed: 01/15/2023] Open
Abstract
In this study, we report the distribution of microbial taxa and their predicted metabolic functions observed in the top (U1), middle (U2), and inner (U3) decadal growth laminae of a unique large conical microbial mat from perennially ice-covered Lake Untersee of East Antarctica, using NextGen sequencing of the 16S rRNA gene and bioinformatics tools. The results showed that the U1 lamina was dominated by cyanobacteria, specifically Phormidium sp., Leptolyngbya sp., and Pseudanabaena sp. The U2 and U3 laminae had high abundances of Actinobacteria, Verrucomicrobia, Proteobacteria, and Bacteroidetes. Closely related taxa within each abundant bacterial taxon found in each lamina were further differentiated at the highest taxonomic resolution using the oligotyping method. PICRUSt analysis, which determines predicted KEGG functional categories from the gene contents and abundances among microbial communities, revealed a high number of sequences belonging to carbon fixation, energy metabolism, cyanophycin, chlorophyll, and photosynthesis proteins in the U1 lamina. The functional predictions of the microbial communities in U2 and U3 represented signal transduction, membrane transport, zinc transport and amino acid-, carbohydrate-, and arsenic- metabolisms. The Nearest Sequenced Taxon Index (NSTI) values processed through PICRUSt were 0.10, 0.13, and 0.11 for U1, U2, and U3 laminae, respectively. These values indicated a close correspondence with the reference microbial genome database, implying high confidence in the predicted metabolic functions of the microbial communities in each lamina. The distribution of microbial taxa observed in each lamina and their predicted metabolic functions provides additional insight into the complex microbial ecosystem at Lake Untersee, and lays the foundation for studies that will enhance our understanding of the mechanisms responsible for the formation of these unique mat structures and their evolutionary significance.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, United States
| | - Nazia Mojib
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, United States
| | - Joseph A Hakim
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, United States
| | - Ian Hawes
- Gateway Antarctica, University of CanterburyChristchurch, New Zealand
| | - Yukiko Tanabe
- National Institute of Polar ResearchTachikawa, Japan
| | - Dale T Andersen
- Carl Sagan Center, SETI Institute, Mountain ViewCA, United States
| | - Asim K Bej
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, United States
| |
Collapse
|
5
|
Louyakis AS, Mobberley JM, Vitek BE, Visscher PT, Hagan PD, Reid RP, Kozdon R, Orland IJ, Valley JW, Planavsky NJ, Casaburi G, Foster JS. A Study of the Microbial Spatial Heterogeneity of Bahamian Thrombolites Using Molecular, Biochemical, and Stable Isotope Analyses. ASTROBIOLOGY 2017; 17:413-430. [PMID: 28520472 PMCID: PMC5767104 DOI: 10.1089/ast.2016.1563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thrombolites are buildups of carbonate that exhibit a clotted internal structure formed through the interactions of microbial mats and their environment. Despite recent advances, we are only beginning to understand the microbial and molecular processes associated with their formation. In this study, a spatial profile of the microbial and metabolic diversity of thrombolite-forming mats of Highborne Cay, The Bahamas, was generated by using 16S rRNA gene sequencing and predictive metagenomic analyses. These molecular-based approaches were complemented with microelectrode profiling and in situ stable isotope analysis to examine the dominant taxa and metabolic activities within the thrombolite-forming communities. Analyses revealed three distinctive zones within the thrombolite-forming mats that exhibited stratified populations of bacteria and archaea. Predictive metagenomics also revealed vertical profiles of metabolic capabilities, such as photosynthesis and carboxylic and fatty acid synthesis within the mats that had not been previously observed. The carbonate precipitates within the thrombolite-forming mats exhibited isotopic geochemical signatures suggesting that the precipitation within the Bahamian thrombolites is photosynthetically induced. Together, this study provides the first look at the spatial organization of the microbial populations within Bahamian thrombolites and enables the distribution of microbes to be correlated with their activities within modern thrombolite systems. Key Words: Thrombolites-Microbial diversity-Metagenome-Stable isotopes-Microbialites. Astrobiology 17, 413-430.
Collapse
Affiliation(s)
- Artemis S. Louyakis
- Department of Microbiology and Cell Science, University of Florida, Space Life Sciences Lab, Merritt Island, Florida
| | - Jennifer M. Mobberley
- Department of Microbiology and Cell Science, University of Florida, Space Life Sciences Lab, Merritt Island, Florida
| | - Brooke E. Vitek
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - Pieter T. Visscher
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut
| | - Paul D. Hagan
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - R. Pamela Reid
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - Reinhard Kozdon
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
- Department of Geoscience, University of Wisconsin, Madison, Wisconsin
| | - Ian J. Orland
- Department of Geoscience, University of Wisconsin, Madison, Wisconsin
| | - John W. Valley
- Department of Geoscience, University of Wisconsin, Madison, Wisconsin
| | - Noah J. Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut
| | - Giorgio Casaburi
- Department of Microbiology and Cell Science, University of Florida, Space Life Sciences Lab, Merritt Island, Florida
| | - Jamie S. Foster
- Department of Microbiology and Cell Science, University of Florida, Space Life Sciences Lab, Merritt Island, Florida
| |
Collapse
|
6
|
Toneatti DM, Albarracín VH, Flores MR, Polerecky L, Farías ME. Stratified Bacterial Diversity along Physico-chemical Gradients in High-Altitude Modern Stromatolites. Front Microbiol 2017; 8:646. [PMID: 28446906 PMCID: PMC5388776 DOI: 10.3389/fmicb.2017.00646] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/29/2017] [Indexed: 11/13/2022] Open
Abstract
At an altitude of 3,570 m, the volcanic lake Socompa in the Argentinean Andes is presently the highest site where actively forming stromatolite-like structures have been reported. Interestingly, pigment and microsensor analyses performed through the different layers of the stromatolites (50 mm-deep) showed steep vertical gradients of light and oxygen, hydrogen sulfide and pH in the porewater. Given the relatively good characterization of these physico-chemical gradients, the aim of this follow-up work was to specifically address how the bacterial diversity stratified along the top six layers of the stromatolites which seems the most metabolically important and diversified zone of the whole microbial community. We herein discussed how, in only 7 mm, a drastic succession of metabolic adaptations occurred: i.e., microbial communities shift from a UV-high/oxic world to an IR-low/anoxic/high H2S environment which force stratification and metabolic specialization of the bacterial community, thus, modulating the chemical faces of the Socompa stromatolites. The oxic zone was dominated by Deinococcus sp. at top surface (0.3 mm), followed by a second layer of Coleofasciculus sp. (0.3 to ∼2 mm). Sequences from anoxygenic phototrophic Alphaproteobacteria, along with an increasing diversity of phyla including Bacteroidetes, Spirochaetes were found at middle layers 3 and 4. Deeper layers (5–7 mm) were mostly occupied by sulfate reducers of Deltaproteobacteria, Bacteroidetes and Firmicutes, next to a high diversity and equitable community of rare, unclassified and candidate phyla. This analysis showed how microbial communities stratified in a physicochemical vertical profile and according to the light source. It also gives an insight of which bacterial metabolic capabilities might operate and produce a microbial cooperative strategy to thrive in one of the most extreme environments on Earth.
Collapse
Affiliation(s)
- Diego M Toneatti
- Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y TécnicasSan Miguel de Tucumán, Argentina
| | - Virginia H Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y TécnicasSan Miguel de Tucumán, Argentina.,Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de TucumánSan Miguel de Tucumán, Argentina.,Centro Integral de Microscopía Electrónica, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de TucumánSan Miguel de Tucumán, Argentina
| | - Maria R Flores
- Department of Earth Sciences - Geochemistry, Utrecht UniversityUtrecht, Netherlands
| | - Lubos Polerecky
- Department of Earth Sciences - Geochemistry, Utrecht UniversityUtrecht, Netherlands
| | - María E Farías
- Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y TécnicasSan Miguel de Tucumán, Argentina
| |
Collapse
|
7
|
Lindsay MR, Anderson C, Fox N, Scofield G, Allen J, Anderson E, Bueter L, Poudel S, Sutherland K, Munson-McGee JH, Van Nostrand JD, Zhou J, Spear JR, Baxter BK, Lageson DR, Boyd ES. Microbialite response to an anthropogenic salinity gradient in Great Salt Lake, Utah. GEOBIOLOGY 2017; 15:131-145. [PMID: 27418462 DOI: 10.1111/gbi.12201] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
A railroad causeway across Great Salt Lake, Utah (GSL), has restricted water flow since its construction in 1959, resulting in a more saline North Arm (NA; 24%-31% salinity) and a less saline South Arm (SA; 11%-14% salinity). Here, we characterized microbial carbonates collected from the SA and the NA to evaluate the effect of increased salinity on community composition and abundance and to determine whether the communities present in the NA are still actively precipitating carbonate or if they are remnant features from prior to causeway construction. SSU rRNA gene abundances associated with the NA microbialite were three orders of magnitude lower than those associated with the SA microbialite, indicating that the latter community is more productive. SSU rRNA gene sequencing and functional gene microarray analyses indicated that SA and NA microbialite communities are distinct. In particular, abundant sequences affiliated with photoautotrophic taxa including cyanobacteria and diatoms that may drive carbonate precipitation and thus still actively form microbialites were identified in the SA microbialite; sequences affiliated with photoautotrophic taxa were in low abundance in the NA microbialite. SA and NA microbialites comprise smooth prismatic aragonite crystals. However, the SA microbialite also contained micritic aragonite, which can be formed as a result of biological activity. Collectively, these observations suggest that NA microbialites are likely to be remnant features from prior to causeway construction and indicate a strong decrease in the ability of NA microbialite communities to actively precipitate carbonate minerals. Moreover, the results suggest a role for cyanobacteria and diatoms in carbonate precipitation and microbialite formation in the SA of GSL.
Collapse
Affiliation(s)
- M R Lindsay
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - C Anderson
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - N Fox
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - G Scofield
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - J Allen
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - E Anderson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - L Bueter
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - S Poudel
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - K Sutherland
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - J H Munson-McGee
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - J D Van Nostrand
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - J Zhou
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - J R Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
- NASA Astrobiology Institute, Mountain View, CA, USA
| | - B K Baxter
- Department of Biology, Westminster College, Salt Lake City, UT, USA
| | - D R Lageson
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - E S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
- NASA Astrobiology Institute, Mountain View, CA, USA
| |
Collapse
|
8
|
Cerqueda-García D, Falcón LI. Metabolic potential of microbial mats and microbialites: Autotrophic capabilities described by an in silico stoichiometric approach from shared genomic resources. J Bioinform Comput Biol 2016; 14:1650020. [PMID: 27324427 DOI: 10.1142/s0219720016500207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microbialites and microbial mats are complex communities with high phylogenetic diversity. These communities are mostly composed of bacteria and archaea, which are the earliest living forms on Earth and relevant to biogeochemical evolution. In this study, we identified the shared metabolic pathways for uptake of inorganic C and N in microbial mats and microbialites based on metagenomic data sets. An in silico analysis for autotrophic pathways was used to trace the paths of C and N to the system, following an elementary flux modes (EFM) approach, resulting in a stoichiometric model. The fragility was analyzed by the minimal cut sets method. We found four relevant pathways for the incorporation of CO2 (Calvin cycle, reverse tricarboxylic acid cycle, reductive acetyl-CoA pathway, and dicarboxylate/4-hydroxybutyrate cycle), some of them present only in archaea, while nitrogen fixation was the most important source of N to the system. The metabolic potential to incorporate nitrate to biomass was also relevant. The fragility of the network was low, suggesting a high redundancy of the autotrophic pathways due to their broad metabolic diversity, and highlighting the relevance of reducing power source. This analysis suggests that microbial mats and microbialites are "metabolic pumps" for the incorporation of inorganic gases and formation of organic matter.
Collapse
Affiliation(s)
- Daniel Cerqueda-García
- 1 Universidad Nacional Autónoma de México, Instituto de Ecología, Circuito Exterior, Ciudad Universitaria, Distrito Federal 04510, Mexico
| | - Luisa I Falcón
- 1 Universidad Nacional Autónoma de México, Instituto de Ecología, Circuito Exterior, Ciudad Universitaria, Distrito Federal 04510, Mexico
| |
Collapse
|
9
|
Rishworth GM, van Elden S, Perissinotto R, Miranda NAF, Steyn PP, Bornman TG. Environmental influences on living marine stromatolites: insights from benthic microalgal communities. Environ Microbiol 2015; 18:503-13. [PMID: 26549416 DOI: 10.1111/1462-2920.13116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 11/30/2022]
Abstract
Extant marine stromatolites act as partial analogues of their Achaean counterparts, but are rare due to depleted ocean calcium carbonate levels and suppression by eukaryotic organisms. Unique, peritidal tufa stromatolites at the interface between marine and freshwater inputs were discovered in South Africa in the past decade. Our aim was to investigate the benthic microalgal community (green algae, diatoms and cyanobacteria) of these stromatolites to assess succession and dominance patterns using real-time, in situ measurements of algal concentrations and composition. These biological measurements were modelled using generalized linear modelling (GLM) multivariate statistics against water physical and chemical parameters measured at regular monthly intervals, from January to December 2014. Salinity peaked and temperature dipped in winter, with both correlated to microalgal community change (GLM: P < 0.01). Diatoms and cyanobacteria, which construct the stromatolites, were consistently the dominant groups within the algal community, with minimal green algae present throughout the year. Importantly, this demonstrates a unique, relatively stable microalgal stromatolite community as opposed to those of other marine stromatolites, which likely require seasonal and stochastic disturbance to persist. This has implications in terms of interpreting community succession and differential layering in modern and fossilized stromatolites respectively.
Collapse
Affiliation(s)
- Gavin M Rishworth
- DST/NRF Research Chair in Shallow Water Ecosystems, Nelson Mandela Metropolitan University, Port Elizabeth, 6031, South Africa
| | - Sean van Elden
- DST/NRF Research Chair in Shallow Water Ecosystems, Nelson Mandela Metropolitan University, Port Elizabeth, 6031, South Africa
| | - Renzo Perissinotto
- DST/NRF Research Chair in Shallow Water Ecosystems, Nelson Mandela Metropolitan University, Port Elizabeth, 6031, South Africa
| | - Nelson A F Miranda
- DST/NRF Research Chair in Shallow Water Ecosystems, Nelson Mandela Metropolitan University, Port Elizabeth, 6031, South Africa
| | - Paul-Pierre Steyn
- Coastal and Marine Research Institute, Department of Botany, Nelson Mandela Metropolitan University, Port Elizabeth, 6031, South Africa
| | - Thomas G Bornman
- Coastal and Marine Research Institute, Department of Botany, Nelson Mandela Metropolitan University, Port Elizabeth, 6031, South Africa.,South African Environmental Observation Network, Elwandle Coastal Node, Port Elizabeth, 6031, South Africa
| |
Collapse
|
10
|
Coman C, Chiriac CM, Robeson MS, Ionescu C, Dragos N, Barbu-Tudoran L, Andrei AŞ, Banciu HL, Sicora C, Podar M. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania. Front Microbiol 2015; 6:253. [PMID: 25870594 PMCID: PMC4378309 DOI: 10.3389/fmicb.2015.00253] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/14/2015] [Indexed: 02/01/2023] Open
Abstract
Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbial mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (<0.5%) but increased significantly at 65°C (36%). The bacterial diversity was either similar to other microbialites described in literature (the 32°C sample) or displayed a specific combination of phyla and classes (the 49°C and 65°C samples). Bacterial taxa were distributed among 39 phyla, out of which 14 had inferred abundances >1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along thermal and geochemical gradients.
Collapse
Affiliation(s)
- Cristian Coman
- Taxonomy and Ecology, Algology, National Institute of Research and Development for Biological Sciences, Institute of Biological Research Cluj-Napoca, Romania ; Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University Cluj-Napoca, Romania
| | - Cecilia M Chiriac
- Taxonomy and Ecology, Algology, National Institute of Research and Development for Biological Sciences, Institute of Biological Research Cluj-Napoca, Romania ; Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University Cluj-Napoca, Romania
| | - Michael S Robeson
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA ; Fish, Wildlife, and Conservation Biology, Colorado State University Fort Collins, CO, USA
| | - Corina Ionescu
- Geology Department, Faculty of Biology and Geology, Babeş-Bolyai University Cluj-Napoca, Romania ; Kazan (Volga Region) Federal University Tatarstan, Russia
| | - Nicolae Dragos
- Taxonomy and Ecology, Algology, National Institute of Research and Development for Biological Sciences, Institute of Biological Research Cluj-Napoca, Romania ; Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center, Faculty of Biology and Geology, Babeş-Bolyai University Cluj-Napoca, Romania
| | - Adrian-Ştefan Andrei
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University Cluj-Napoca, Romania ; Molecular Biology Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş-Bolyai University Cluj-Napoca, Romania
| | - Horia L Banciu
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University Cluj-Napoca, Romania ; Molecular Biology Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş-Bolyai University Cluj-Napoca, Romania
| | | | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| |
Collapse
|
11
|
Effects of Elevated Carbon Dioxide and Salinity on the Microbial Diversity in Lithifying Microbial Mats. MINERALS 2014. [DOI: 10.3390/min4010145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Edgcomb VP, Bernhard JM, Summons RE, Orsi W, Beaudoin D, Visscher PT. Active eukaryotes in microbialites from Highborne Cay, Bahamas, and Hamelin Pool (Shark Bay), Australia. ISME JOURNAL 2013; 8:418-29. [PMID: 23924782 DOI: 10.1038/ismej.2013.130] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 11/09/2022]
Abstract
Microbialites are organosedimentary structures that are formed through the interaction of benthic microbial communities and sediments and include mineral precipitation. These lithifying microbial mat structures include stromatolites and thrombolites. Exuma Sound in the Bahamas, and Hamelin Pool in Shark Bay, Western Australia, are two locations where significant stands of modern microbialites exist. Although prokaryotic diversity in these structures is reasonably well documented, little is known about the eukaryotic component of these communities and their potential to influence sedimentary fabrics through grazing, binding and burrowing activities. Accordingly, comparisons of eukaryotic communities in modern stromatolitic and thrombolitic mats can potentially provide insight into the coexistence of both laminated and clotted mat structures in close proximity to one another. Here we examine this possibility by comparing eukaryotic diversity based on Sanger and high-throughput pyrosequencing of small subunit ribosomal RNA (18S rRNA) genes. Analyses were based on total RNA extracts as template to minimize input from inactive or deceased organisms. Results identified diverse eukaryotic communities particularly stramenopiles, Alveolata, Metazoa, Amoebozoa and Rhizaria within different mat types at both locations, as well as abundant and diverse signatures of eukaryotes with <80% sequence similarity to sequences in GenBank. This suggests the presence of significant novel eukaryotic diversity, particularly in hypersaline Hamelin Pool. There was evidence of vertical structuring of protist populations and foraminiferal diversity was highest in bioturbated/clotted thrombolite mats of Highborne Cay.
Collapse
Affiliation(s)
- Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Joan M Bernhard
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Roger E Summons
- EAPS Department, Massachusetts Institute of Technology, Boston, MA, USA
| | - William Orsi
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - David Beaudoin
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Pieter T Visscher
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
13
|
Edgcomb VP, Bernhard JM, Beaudoin D, Pruss S, Welander PV, Schubotz F, Mehay S, Gillespie AL, Summons RE. Molecular indicators of microbial diversity in oolitic sands of Highborne Cay, Bahamas. GEOBIOLOGY 2013; 11:234-251. [PMID: 23398981 DOI: 10.1111/gbi.12029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 01/04/2013] [Indexed: 06/01/2023]
Abstract
Microbialites (stromatolites and thrombolites) are mineralized mat structures formed via the complex interactions of diverse microbial-mat communities. At Highborne Cay, in the Bahamas, the carbonate component of these features is mostly comprised of ooids. These are small, spherical to ellipsoidal grains characterized by concentric layers of calcium carbonate and organic matter and these sand-sized particles are incorporated with the aid of extra-cellular polymeric substances (EPS), into the matrix of laminated stromatolites and clotted thrombolite mats. Here, we present a comparison of the bacterial diversity within oolitic sand samples and bacterial diversity previously reported in thrombolitic and stromatolitic mats of Highborne Cay based on analysis of clone libraries of small subunit ribosomal RNA gene fragments and lipid biomarkers. The 16S-rRNA data indicate that the overall bacterial diversity within ooids is comparable to that found within thrombolites and stromatolites of Highborne Cay, and this significant overlap in taxonomic groups suggests that ooid sands may be a source for much of the bacterial diversity found in the local microbialites. Cyanobacteria were the most diverse taxonomic group detected, followed by Alphaproteobacteria, Gammaproteobacteria, Planctomyces, Deltaproteobacteria, and several other groups also found in mat structures. The distributions of intact polar lipids, the fatty acids derived from them, and bacteriohopanepolyols provide broad general support for the bacterial diversity identified through analysis of nucleic acid clone libraries.
Collapse
Affiliation(s)
- V P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Centeno CM, Legendre P, Beltrán Y, Alcántara-Hernández RJ, Lidström UE, Ashby MN, Falcón LI. Microbialite genetic diversity and composition relate to environmental variables. FEMS Microbiol Ecol 2012; 82:724-35. [PMID: 22775797 DOI: 10.1111/j.1574-6941.2012.01447.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 11/30/2022] Open
Abstract
Microbialites have played an important role in the early history of life on Earth. Their fossilized forms represent the oldest evidence of life on our planet dating back to 3500 Ma. Extant microbialites have been suggested to be highly productive and diverse communities with an evident role in the cycling of major elements, and in contributing to carbonate precipitation. Although their ecological and evolutionary importance has been recognized, the study of their genetic diversity is yet scanty. The main goal of this study was to analyse microbial genetic diversity of microbialites living in different types of environments throughout Mexico, including desert ponds, coastal lagoons and a crater-lake. We followed a pyrosequencing approach of hypervariable regions of the 16S rRNA gene. Results showed that microbialite communities were very diverse (H' = 6-7) and showed geographic variation in composition, as well as an environmental effect related to pH and conductivity, which together explained 33% of the genetic variation. All microbialites had similar proportions of major bacterial and archaeal phyla.
Collapse
Affiliation(s)
- Carla M Centeno
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
15
|
Nitti A, Daniels CA, Siefert J, Souza V, Hollander D, Breitbart M. Spatially resolved genomic, stable isotopic, and lipid analyses of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. ASTROBIOLOGY 2012; 12:685-98. [PMID: 22882001 PMCID: PMC3426887 DOI: 10.1089/ast.2011.0812] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/23/2012] [Indexed: 05/26/2023]
Abstract
Microbialites are biologically mediated carbonate deposits found in diverse environments worldwide. To explore the organisms and processes involved in microbialite formation, this study integrated genomic, lipid, and both organic and inorganic stable isotopic analyses to examine five discrete depth horizons spanning the surface 25 mm of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. Distinct bacterial communities and geochemical signatures were observed in each microbialite layer. Photoautotrophic organisms accounted for approximately 65% of the sequences in the surface community and produced biomass with distinctive lipid biomarker and isotopic (δ(13)C) signatures. This photoautotrophic biomass was efficiently degraded in the deeper layers by heterotrophic organisms, primarily sulfate-reducing proteobacteria. Two spatially distinct zones of carbonate precipitation were observed within the microbialite, with the first zone corresponding to the phototroph-dominated portion of the microbialite and the second zone associated with the presence of sulfate-reducing heterotrophs. The coupling of photoautotrophic production, heterotrophic decomposition, and remineralization of organic matter led to the incorporation of a characteristic biogenic signature into the inorganic CaCO(3) matrix. Overall, spatially resolved multidisciplinary analyses of the microbialite enabled correlations to be made between the distribution of specific organisms, precipitation of carbonate, and preservation of unique lipid and isotopic geochemical signatures. These findings are critical for understanding the formation of modern microbialites and have implications for the interpretation of ancient microbialite records.
Collapse
Affiliation(s)
- Anthony Nitti
- College of Marine Science, University of South Florida, Florida, USA
| | | | - Janet Siefert
- Department of Statistics, Rice University, Texas, USA
| | - Valeria Souza
- Department Ecologia Evolutiva, Instituto de Ecologia, National Autonomous University of Mexico, Coyoacan, Mexico
| | - David Hollander
- College of Marine Science, University of South Florida, Florida, USA
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Florida, USA
| |
Collapse
|
16
|
Cuerno R, Escudero C, García-Ruiz JM, Herrero MA. Pattern formation in stromatolites: insights from mathematical modelling. J R Soc Interface 2011; 9:1051-62. [PMID: 21993008 DOI: 10.1098/rsif.2011.0516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To this day, computer models for stromatolite formation have made substantial use of the Kardar-Parisi-Zhang (KPZ) equation. Oddly enough, these studies yielded mutually exclusive conclusions about the biotic or abiotic origin of such structures. We show in this paper that, at our current state of knowledge, a purely biotic origin for stromatolites can neither be proved nor disproved by means of a KPZ-based model. What can be shown, however, is that whatever their (biotic or abiotic) origin might be, some morphologies found in actual stromatolite structures (e.g. overhangs) cannot be formed as a consequence of a process modelled exclusively in terms of the KPZ equation and acting over sufficiently large times. This suggests the need to search for alternative mathematical approaches to model these structures, some of which are discussed in this paper.
Collapse
Affiliation(s)
- R Cuerno
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain
| | | | | | | |
Collapse
|