1
|
Gu J, Isozumi N, Yuan S, Jin L, Gao B, Ohki S, Zhu S. Evolution-Based Protein Engineering for Antifungal Peptide Improvement. Mol Biol Evol 2021; 38:5175-5189. [PMID: 34320203 PMCID: PMC8557468 DOI: 10.1093/molbev/msab224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been considered as the alternatives to antibiotics because of their less susceptibility to microbial resistance. However, compared with conventional antibiotics they show relatively low activity and the consequent high cost and nonspecific cytotoxicity, hindering their clinical application. What’s more, engineering of AMPs is a great challenge due to the inherent complexity in their sequence, structure, and function relationships. Here, we report an evolution-based strategy for improving the antifungal activity of a nematode-sourced defensin (Cremycin-5). This strategy utilizes a sequence-activity comparison between Cremycin-5 and its functionally diverged paralogs to identify sites associated with antifungal activity for screening of enhanceable activity-modulating sites for subsequent saturation mutagenesis. Using this strategy, we identified a site (Glu-15) whose mutations with nearly all other types of amino acids resulted in a universally enhanced activity against multiple fungal species, which is thereby defined as a Universally Enhanceable Activity-Modulating Site (UEAMS). Especially, Glu15Lys even exhibited >9-fold increased fungicidal potency against several clinical isolates of Candida albicans through inhibiting cytokinesis. This mutant showed high thermal and serum stability and quicker killing kinetics than clotrimazole without detectable hemolysis. Molecular dynamic simulations suggest that the mutations at the UEAMS likely limit the conformational flexibility of a distant functional residue via allostery, enabling a better peptide–fungus interaction. Further sequence, structural, and mutational analyses of the Cremycin-5 ortholog uncover an epistatic interaction between the UEAMS and another site that may constrain its evolution. Our work lights one new road to success of engineering AMP drug leads.
Collapse
Affiliation(s)
- Jing Gu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Noriyoshi Isozumi
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Shouli Yuan
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Jin
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Shinya Ohki
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
2
|
Hernández Duran L, Wilson DT, Briffa M, Rymer TL. Beyond spider personality: The relationships between behavioral, physiological, and environmental factors. Ecol Evol 2021; 11:2974-2989. [PMID: 33841759 PMCID: PMC8019048 DOI: 10.1002/ece3.7243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
Spiders are useful models for testing different hypotheses and methodologies relating to animal personality and behavioral syndromes because they show a range of behavioral types and unique physiological traits (e.g., silk and venom) that are not observed in many other animals. These characteristics allow for a unique understanding of how physiology, behavioral plasticity, and personality interact across different contexts to affect spider's individual fitness and survival. However, the relative effect of extrinsic factors on physiological traits (silk, venom, and neurohormones) that play an important role in spider survival, and which may impact personality, has received less attention. The goal of this review is to explore how the environment, experience, ontogeny, and physiology interact to affect spider personality types across different contexts. We highlight physiological traits, such as neurohormones, and unique spider biochemical weapons, namely silks and venoms, to explore how the use of these traits might, or might not, be constrained or limited by particular behavioral types. We argue that, to develop a comprehensive understanding of the flexibility and persistence of specific behavioral types in spiders, it is necessary to incorporate these underlying mechanisms into a synthesized whole, alongside other extrinsic and intrinsic factors.
Collapse
Affiliation(s)
- Linda Hernández Duran
- College of Science and EngineeringJames Cook UniversityCairnsQldAustralia
- Centre for Tropical Environmental and Sustainability SciencesJames Cook UniversityCairnsQldAustralia
| | - David Thomas Wilson
- Centre for Molecular TherapeuticsAustralian Institute for Tropical Health and MedicineJames Cook UniversityCairnsQldAustralia
| | - Mark Briffa
- School of Biological and Marine SciencesPlymouth UniversityPlymouthUK
| | - Tasmin Lee Rymer
- College of Science and EngineeringJames Cook UniversityCairnsQldAustralia
- Centre for Tropical Environmental and Sustainability SciencesJames Cook UniversityCairnsQldAustralia
| |
Collapse
|