1
|
Naito A, Okushita K, Aoki A, Asakura T. Chain-Folded Lamellar Stacking Structure of the Crystalline Fraction of Bombyx mori Silk Fibroin with Silk II Form Studied by 2D 13C- 13C Homonuclear Correlation NMR Spectroscopy. J Phys Chem B 2024; 128:8459-8468. [PMID: 39167087 DOI: 10.1021/acs.jpcb.4c03716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The structure of Bombyx mori silk fibroin (SF) is a subject of significant interest due to its remarkable physical properties; however, its atomic-level structure is still not conclusive. We previously proposed a lamellar stacking structure for the crystalline fraction (Cp) with β-turns occurring every eighth amino acid. In this study, we took the following steps: At first, a model of the chain-folded lamellar stacking structure in antipolar and antiparallel β-sheet layers was constructed. Then, dipolar-assisted rotational resonance solid-state NMR spectra were observed to determine the effective internuclear distance (rj,keff) for the uniformly 13C-labeled Cp fraction sample. By comparing the experimentally obtained rj,keff (obs) values with the calculated rj,keff (calc) values from our structural model, a fairly good correlation between the observed and calculated values of the internuclear distances was obtained with a standard deviation of 0.37 Å. This supports the existence of the chain-folded lamellar stacking structure in the SF fiber. These findings contribute to our understanding of the atomic-level structure of SF and its exceptional properties.
Collapse
Affiliation(s)
- Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Keiko Okushita
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akihiro Aoki
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
2
|
Asakura T, Nishimura A, Naito A. Stretching-Induced Conformational Transition of [3- 13C]Ser- and [3- 13C]Tyr- Antheraea yamamai Silk Fibroin before Spinning Investigated with 13C Solid-State NMR Spectroscopy. Biomacromolecules 2022; 23:5095-5105. [PMID: 36449573 DOI: 10.1021/acs.biomac.2c00937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The conformational transition of [3-13C]Ser- and [3-13C]Tyr-Antheraea yamamai silk fibroin before spinning induced by stretching was investigated with 13C CP/MAS NMR spectroscopy. The α-helix content of the silk fibroin before stretching was found to be 31.6% based on the Ala and Ser peaks. With increasing stretching ratio, the α-helix and the random coil Ala Cβ peaks decreased gradually, while the β-sheet peak was observed at a stretching ratio of ×5 and increased rapidly upon further stretching. For Ser residue, the α-helix peak decreased monotonically with increasing stretching ratio, but the random coil peak increased slightly till the stretching ratio of ×5 and then decreased. A small β-sheet peak was observed before stretching and then increased rapidly starting from the stretching ratio of ×7. In contrast, a gradual decrease of random coil peak and an increase of β-sheet peak were observed for the Tyr residue. The results of this investigation may be helpful for further studies of fiber formation mechanism in A. yamamai and in the future design of artificial silk materials.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
3
|
Asakura T, Ibe Y, Jono T, Matsuda H, Kuwabara N, Naito A. Structural investigations of polyurethane and
silk‐polyurethane
composite fiber studied by
13
C
solid‐state
NMR
spectroscopy. J Appl Polym Sci 2021. [DOI: 10.1002/app.51178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology Tokyo University of Agriculture and Technology Koganei Tokyo Japan
| | - Yusuke Ibe
- Polyurethane Research Laboratory Tosoh Corporation Yokkaichi Mie Japan
| | - Takaki Jono
- Polyurethane Research Laboratory Tosoh Corporation Yokkaichi Mie Japan
| | - Hironori Matsuda
- Department of Biotechnology Tokyo University of Agriculture and Technology Koganei Tokyo Japan
| | - Nobuo Kuwabara
- Gunma Sericultural Technology Center Maebashi Gunma Japan
| | - Akira Naito
- Department of Biotechnology Tokyo University of Agriculture and Technology Koganei Tokyo Japan
| |
Collapse
|
4
|
Asakura T, Aoki A, Komatsu K, Ito C, Suzuki I, Naito A, Kaji H. Lamellar Structure in Alanine-Glycine Copolypeptides Studied by Solid-State NMR Spectroscopy: A Model for the Crystalline Domain of Bombyx mori Silk Fibroin in Silk II Form. Biomacromolecules 2020; 21:3102-3111. [PMID: 32603138 DOI: 10.1021/acs.biomac.0c00486] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bombyx mori silk fibroin (SF) fibers with excellent mechanical properties have attracted widespread attention as new biomaterials. However, the structural details are still not conclusive. Here, we propose a lamellar structure for the crystalline domain of the SF fiber based on structural analyses of the Ala Cβ peaks in the 13C cross-polarization/magic angle spinning NMR spectra of (Ala-Gly)m (m = 9, 12, 15, and 25) and 13C selectively labeled (Ala-Gly)15 model peptides. Namely, three Ala Cβ peaks with relative intensities of 1:2:1 obtained by deconvolution were assigned to two kinds of β-sheet and a β-turn, which are interpreted as a lamellar structure formed by repetitive folding using β-turns every eighth amino acid, for which the basic structure is (Ala-Gly)4 in an antipolar arrangement. The dynamics and intermolecular arrangement were further studied using 13C solid-state spin-lattice relaxation time observations and the rotational echo double resonance experiments, respectively.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akihiro Aoki
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kohei Komatsu
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Chie Ito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Ikue Suzuki
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
5
|
Asakura T, Okonogi M, Naito A. Toward Understanding the Silk Fiber Structure: 13C Solid-State NMR Studies of the Packing Structures of Alanine Oligomers before and after Trifluoroacetic Acid Treatment. J Phys Chem B 2019; 123:6716-6727. [PMID: 31304756 DOI: 10.1021/acs.jpcb.9b04565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polyalanine (poly-A) sequences with tightly packed antiparallel β sheet (AP-β) structures are frequently observed in silk fibers and serve as a key contributor to the exceptionally high-fiber tensile strength. In general, the poly-A sequence embedded in the amorphous glycine-rich regions has different lengths depending on the fiber type from spiders or wild silkworms. In this paper, the packing structures of AP-β alanine oligomers with different lengths were studied using 13C solid-state NMR as a model of the poly-A sequences. These included alanine oligomers with and without the protection groups (i.e., 9-fluorenylmethoxycarbonyl and polyethylene glycol groups at the N- and C-terminals, respectively). The fractions of the packing structures as well as the conformations were determined by deconvolution analyses of the methyl NMR peaks. Trifluoroacetic acid was used to promote the staggered packing structures, and the line shapes changed significantly for oligomers without the protected groups but only slightly for oligomers with the protected groups. Through NMR analysis of the 3-13C singly labeled alanine heptamer and refined crystal structure of the staggered packing units, a possible mechanism of the staggered packing formation is proposed for the AP-β alanine heptamer.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| | - Michi Okonogi
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| | - Akira Naito
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| |
Collapse
|
6
|
Naito A, Kametani S, Aoki A, Asakura T. Structural Analyses of Alanine Trimer and Tetramer Crystals with Antiparallel and Parallel β-Sheet Structures Using Solid-State 1H Spin-Diffusion 2D Correlation NMR Spectroscopy. J Phys Chem B 2018; 122:9373-9381. [PMID: 30234305 DOI: 10.1021/acs.jpcb.8b07859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly-l-alanine (PLA) sequences are key elements of the crystalline domains of spider dragline and wild silkworm silks. In the present work, 1H spin-diffusion two-dimensional (2D) correlation NMR spectra were observed for selectively deuterated (Ala)3 and (Ala)4 crystals to develop the analytical method for the structure of PLA sequences. The build-up curves of the cross peaks for three kinds of 1H pairs in selectively deuterated (Ala)3 and (Ala)4 crystals were observed to obtain spin-diffusion rate constant k j, k from relaxation master equations P i, j(τm). The k j, k values subsequently lead to effective interproton distance r j, keff (obs) values for individual proton-proton pairs, which include intra- and intermolecular contributions. The r j, keff (obs) values were compared to r j, keff (calc) values obtained from the experimentally determined atomic coordinates of antiparallel (AP) β-sheet (Ala)3 and (Ala)4 and parallel (P) β-sheet of (Ala)3 and (Ala)4 crystals. The agreement between the r j, keff (obs) and r j, keff (calc) values was good for AP β-sheet (Ala)3 and (Ala)4 crystals but poor for P β-sheet (Ala)3 and (Ala)4 crystals. These deviations were obtained from the interproton distances of the interchain contributions due to different packing arrangements. The packing arrangements of the PLA region are important when considering the relevant structure and the mechanical properties of silks.
Collapse
Affiliation(s)
- Akira Naito
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| | - Shunsuke Kametani
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| | - Akihiro Aoki
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| | - Tetsuo Asakura
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| |
Collapse
|
7
|
Asakura T, Matsuda H, Kataoka N, Imai A. Changes in the Local Structure of Nephila clavipes Dragline Silk Model Peptides upon Trifluoroacetic Acid, Low pH, Freeze-Drying, and Hydration Treatments Studied by 13C Solid-State NMR. Biomacromolecules 2018; 19:4396-4410. [DOI: 10.1021/acs.biomac.8b01267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Naomi Kataoka
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akiko Imai
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
8
|
Naito A, Tasei Y, Nishimura A, Asakura T. Unusual Dynamics of Alanine Residues in Polyalanine Regions with Staggered Packing Structure of Samia cynthia ricini Silk Fiber in Dry and Hydrated States Studied by 13C Solid-State NMR and Molecular Dynamics Simulation. J Phys Chem B 2018; 122:6511-6520. [DOI: 10.1021/acs.jpcb.8b03509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
9
|
Asakura T, Nishimura A, Tasei Y. Determination of Local Structure of 13C Selectively Labeled 47-mer Peptides as a Model for Gly-Rich Region of Nephila clavipes Dragline Silk Using a Combination of 13C Solid-State NMR and MD Simulation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
10
|
Naito A, Okushita K, Nishimura K, Boutis GS, Aoki A, Asakura T. Quantitative Analysis of Solid-State Homonuclear Correlation Spectra of Antiparallel β-Sheet Alanine Tetramers. J Phys Chem B 2018; 122:2715-2724. [PMID: 29420030 DOI: 10.1021/acs.jpcb.7b11126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Poly-l-alanine (PLA) sequences are a key element in the structure of the crystalline domains of spider dragline silks, wild silkworm silks, antifreeze proteins, and amyloids. To date, no atomic-level structures of antiparallel (AP)-PLA longer than Ala4 have been reported using the single-crystal X-ray diffraction analysis. In this work, dipolar-assisted rotational resonance solid-state NMR spectra were observed to determine the effective internuclear distances of 13C uniformly labeled alanine tetramer with antiparallel (AP) β-sheet structure whose atomic coordinates are determined from the X-ray crystallographic analysis. Initial build-up rates, R j, k, were obtained from the build-up curves of the cross peaks by considering the internuclear distances arising in the master equation. Subsequently, experimentally obtained effective internuclear distances, reffj, k(obs), were compared with the calculated reffj, k(calc) values obtained from the X-ray crystallographic data. Fairly good correlation between reffj, k(obs) and reffj, k(calc) was obtained in the range of 1.0-6.0 Å, with the standard deviation of 0.244 Å, without considering the zero-quantum line-shape functions. It was further noted that the internuclear distances of intermolecular contributions provide details relating to the molecular packing in solid-state samples. Thus, the present data agree well with AP-β-sheet packing but do not agree with P-β-sheet packing.
Collapse
Affiliation(s)
- Akira Naito
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| | - Keiko Okushita
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan.,Institute for Molecular Science , 38 Nishigo-Naka , Myodaiji, Okazaki 444-8585 , Japan
| | - Katsuyuki Nishimura
- Institute for Molecular Science , 38 Nishigo-Naka , Myodaiji, Okazaki 444-8585 , Japan
| | - Gregory S Boutis
- Department of Physics , Brooklyn College of The City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Department of Physics , The Graduate Center of The City University of New York , 365 5th Avenue , New York , New York 10016 , United States
| | - Akihiro Aoki
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| | - Tetsuo Asakura
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| |
Collapse
|
11
|
Nishimura A, Matsuda H, Tasei Y, Asakura T. Effect of Water on the Structure and Dynamics of Regenerated [3- 13C] Ser, [3- 13C] , and [3- 13C] Ala-Bombyx mori Silk Fibroin Studied with 13C Solid-State Nuclear Magnetic Resonance. Biomacromolecules 2018; 19:563-575. [PMID: 29309731 DOI: 10.1021/acs.biomac.7b01665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effects of water on the structure and dynamics of natural and regenerated silk fibroin (SF) samples were studied using 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. We prepared different types of SF materials, sponges, and fibers with different preparation methods and compared their NMR spectra in the dry and hydrated states. Three kinds of 13C NMR techniques, r-INEPT, CP/MAS, and DD/MAS, coupled with 13C isotope labeling of Ser, Tyr, and Ala residues were used. In the hydrated sponges, several conformations, that is, Silk I* and two kinds of β-sheets, A and B, random coil, and highly mobile hydrated random coil were observed, and the fractions were determined. The fractions were remarkably different among the three sponges but with only small differences among the regenerated and native fibers. The increase in the fraction of β-sheet B might be one of the structural factors for preparing stronger regenerated SF fiber.
Collapse
Affiliation(s)
- Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology , Koganei, Tokyo 184-8588, Japan
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology , Koganei, Tokyo 184-8588, Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology , Koganei, Tokyo 184-8588, Japan
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology , Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
12
|
Influence factors analysis on the formation of silk I structure. Int J Biol Macromol 2015; 75:398-401. [PMID: 25677178 DOI: 10.1016/j.ijbiomac.2015.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 11/22/2022]
Abstract
Regenerated silk fibroin aqueous solution was used to study the crystalline structure of Bombyx mori silk fibroin in vitro. By controlling environmental conditions and concentration of silk fibroin solution, it provided a means for the direct preparing silk I structure and understanding the details of silk fibroin molecules interactions in formation process. In this study, silk fibroin molecules were assembled to form random coil at low concentration of solution and then, as the concentration increases, were converted to silk I at 55% relative humidity (RH). At the same time, the structure of silk fibroin forming below 45 °C was mostly in silk I. A partial ternary phase diagram of temperature-humidity-concentration was constructed based on the results. The results showed silk I structure could be controlled by adjusting the external environmental conditions. The enhanced control over silk I structure, as embodied in phase diagram, could potentially be utilized to understand the molecular chain conformation of silk I in further research work.
Collapse
|
13
|
Bie S, Ming J, Zhou Y, Zhong T, Zhang F, Zuo B. Rapid formation of flexible silk fibroin gel-like films. J Appl Polym Sci 2014. [DOI: 10.1002/app.41842] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shiyu Bie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering; Soochow University; Suzhou 215123 China
| | - Jinfa Ming
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering; Soochow University; Suzhou 215123 China
| | - Yan Zhou
- Suzhou Institute of Trade & Commerce; Suzhou 215009 China
| | - Tianyi Zhong
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering; Soochow University; Suzhou 215123 China
| | - Feng Zhang
- Jiangsu Province Key Laboratory of Stem Cell Research; Medical College, Soochow University; Suzhou 215123 China
| | - Baoqi Zuo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering; Soochow University; Suzhou 215123 China
| |
Collapse
|