1
|
Zuo Z, Zhao H, Fan Y, Zhu Y, Song W, Zhai H, He S, Zhang H, Zhao N, Liu Q, Gao S. Evolutionary analysis of DELLA proteins in sweet potato and related species reveals their roles in development and stress responses. FRONTIERS IN PLANT SCIENCE 2025; 16:1494621. [PMID: 39916778 PMCID: PMC11798988 DOI: 10.3389/fpls.2025.1494621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025]
Abstract
DELLA proteins act as master negative regulators in the gibberellin signaling pathway, which controls numerous aspects of plant growth and development. Despite the pivotal role of DELLA proteins, a comprehensive genome-wide analysis of the DELLA gene family in sweet potato (Ipomoea batatas) and its related species has yet to be conducted. Here, we performed a comparative analysis of this gene family among six Ipomoea species, including Ipomoea batatas, Ipomoea trifida, Ipomoea triloba, Ipomoea nil, Ipomoea cairica, and Ipomoea aquatica. Among the six Ipomoea species, only I. nil contains five DELLA genes, while the remaining species have three DELLA genes each. The DELLA genes were categorized into three distinct subgroups based on the phylogenetic topology in selected Ipomoea species. Comparative analysis of gene structure and protein motifs revealed that members within the same phylogenetic group exhibit comparable exon/intron and motif organization. The cis-regulatory elements of the DELLA gene in selected Ipomoea species contain unique promoter elements, indicating the presence of species-specific regulatory mechanisms. A multitude of shared cis-regulatory elements related to stress responses were identified in the DELLA gene promoters. Furthermore, a syntenic analysis indicates two groups of syntenic DELLA genes have undergone several rearrangements. The results of the duplication analysis indicated that dispersed duplications contribute to the expansion of the DELLA genes. Moreover, the DELLA genes in sweet potato display an expression pattern that tends to control the growth and development of either the aerial or below-ground parts, and they are responsive to a range of hormones and abiotic stresses. Thus, these findings provide insights into the evolutionary history of DELLA genes within the genus Ipomoea and the functions of sweet potato DELLA genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Jha DK, Chanwala J, Barla P, Dey N. "Genome-wide identification of bZIP gene family in Pearl millet and transcriptional profiling under abiotic stress, phytohormonal treatments; and functional characterization of PgbZIP9". FRONTIERS IN PLANT SCIENCE 2024; 15:1352040. [PMID: 38469329 PMCID: PMC10925649 DOI: 10.3389/fpls.2024.1352040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
Abiotic stresses are major constraints in crop production, and are accountable for more than half of the total crop loss. Plants overcome these environmental stresses using coordinated activities of transcription factors and phytohormones. Pearl millet an important C4 cereal plant having high nutritional value and climate resilient features is grown in marginal lands of Africa and South-East Asia including India. Among several transcription factors, the basic leucine zipper (bZIP) is an important TF family associated with diverse biological functions in plants. In this study, we have identified 98 bZIP family members (PgbZIP) in pearl millet. Phylogenetic analysis divided these PgbZIP genes into twelve groups (A-I, S, U and X). Motif analysis has shown that all the PgbZIP proteins possess conserved bZIP domains and the exon-intron organization revealed conserved structural features among the identified genes. Cis-element analysis, RNA-seq data analysis, and real-time expression analysis of PgbZIP genes suggested the potential role of selected PgbZIP genes in growth/development and abiotic stress responses in pearl millet. Expression profiling of selected PgbZIPs under various phytohormones (ABA, SA and MeJA) treatment showed differential expression patterns of PgbZIP genes. Further, PgbZIP9, a homolog of AtABI5 was found to localize in the nucleus and modulate gene expression in pearl millet under stresses. Our present findings provide a better understanding of bZIP genes in pearl millet and lay a good foundation for the further functional characterization of multi-stress tolerant PgbZIP genes, which could become efficient tools for crop improvement.
Collapse
Affiliation(s)
- Deepak Kumar Jha
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Jeky Chanwala
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Preeti Barla
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
3
|
Paul A, Chatterjee A, Subrahmanya S, Shen G, Mishra N. NHX Gene Family in Camellia sinensis: In-silico Genome-Wide Identification, Expression Profiles, and Regulatory Network Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:777884. [PMID: 34987532 PMCID: PMC8720784 DOI: 10.3389/fpls.2021.777884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Salt stress affects the plant growth and productivity worldwide and NHX is one of those genes that are well known to improve salt tolerance in transgenic plants. It is well characterized in several plants, such as Arabidopsis thaliana and cotton; however, not much is known about NHXs in tea plant. In the present study, NHX genes of tea were obtained through a genome-wide search using A. thaliana as reference genome. Out of the 9 NHX genes in tea, 7 genes were localized in vacuole while the remaining 2 genes were localized in the endoplasmic reticulum (ER; CsNHX8) and plasma membrane (PM; CsNHX9), respectively. Furthermore, phylogenetic relationships along with structural analysis which includes gene structure, location, and protein-conserved motifs and domains were systematically examined and further, predictions were validated by the expression analysis. The dN/dS values show that the majority of tea NHX genes is subjected to strong purifying selection under the course of evolution. Also, functional interaction was carried out in Camellia sinensis based on the orthologous genes in A. thaliana. The expression profiles linked to various stress treatments revealed wide involvement of NHX genes from tea in response to various abiotic factors. This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the NHX regulatory network in C. sinensis.
Collapse
Affiliation(s)
| | | | | | - Guoxin Shen
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Neelam Mishra
- Department of Botany, St. Joseph’s College Autonomous, Bangalore, India
| |
Collapse
|
4
|
Paul A, Srivastava AP, Subrahmanya S, Shen G, Mishra N. In-silico genome wide analysis of Mitogen activated protein kinase kinase kinase gene family in C. sinensis. PLoS One 2021; 16:e0258657. [PMID: 34735479 PMCID: PMC8568164 DOI: 10.1371/journal.pone.0258657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/01/2021] [Indexed: 11/19/2022] Open
Abstract
Mitogen activated protein kinase kinase kinase (MAPKKK) form the upstream component of MAPK cascade. It is well characterized in several plants such as Arabidopsis and rice however the knowledge about MAPKKKs in tea plant is largely unknown. In the present study, MAPKKK genes of tea were obtained through a genome wide search using Arabidopsis thaliana as the reference genome. Among 59 candidate MAPKKK genes in tea, 17 genes were MEKK-like, 31 genes were Raf-like and 11 genes were ZIK- like. Additionally, phylogenetic relationships were established along with structural analysis, which includes gene structure, its location as well as conserved motifs, cis-acting regulatory elements and functional domain signatures that were systematically examined. Also, on the basis of one orthologous gene found between tea and Arabidopsis, functional interaction was carried out in C. sinensis based on an Arabidopsis association model. The expressional profiles indicated major involvement of MAPKKK genes from tea in response to various abiotic stress factors. Taken together, this study provides the targets for additional inclusive identification, functional study, and provides comprehensive knowledge for a better understanding of the MAPKKK cascade regulatory network in C. sinensis.
Collapse
Affiliation(s)
- Abhirup Paul
- Department of Biochemistry, REVA University, Bangalore, Karnataka, India
| | - Anurag P. Srivastava
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Shreya Subrahmanya
- Department of Botany, St. Joseph’s College Autonomous, Bangalore, Karnataka, India
| | - Guoxin Shen
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Neelam Mishra
- Department of Botany, St. Joseph’s College Autonomous, Bangalore, Karnataka, India
| |
Collapse
|
5
|
Aviña-Padilla K, Ramírez-Rafael JA, Herrera-Oropeza GE, Muley VY, Valdivia DI, Díaz-Valenzuela E, García-García A, Varela-Echavarría A, Hernández-Rosales M. Evolutionary Perspective and Expression Analysis of Intronless Genes Highlight the Conservation of Their Regulatory Role. Front Genet 2021; 12:654256. [PMID: 34306008 PMCID: PMC8302217 DOI: 10.3389/fgene.2021.654256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
The structure of eukaryotic genes is generally a combination of exons interrupted by intragenic non-coding DNA regions (introns) removed by RNA splicing to generate the mature mRNA. A fraction of genes, however, comprise a single coding exon with introns in their untranslated regions or are intronless genes (IGs), lacking introns entirely. The latter code for essential proteins involved in development, growth, and cell proliferation and their expression has been proposed to be highly specialized for neuro-specific functions and linked to cancer, neuropathies, and developmental disorders. The abundant presence of introns in eukaryotic genomes is pivotal for the precise control of gene expression. Notwithstanding, IGs exempting splicing events entail a higher transcriptional fidelity, making them even more valuable for regulatory roles. This work aimed to infer the functional role and evolutionary history of IGs centered on the mouse genome. IGs consist of a subgroup of genes with one exon including coding genes, non-coding genes, and pseudogenes, which conform approximately 6% of a total of 21,527 genes. To understand their prevalence, biological relevance, and evolution, we identified and studied 1,116 IG functional proteins validating their differential expression in transcriptomic data of embryonic mouse telencephalon. Our results showed that overall expression levels of IGs are lower than those of MEGs. However, strongly up-regulated IGs include transcription factors (TFs) such as the class 3 of POU (HMG Box), Neurog1, Olig1, and BHLHe22, BHLHe23, among other essential genes including the β-cluster of protocadherins. Most striking was the finding that IG-encoded BHLH TFs fit the criteria to be classified as microproteins. Finally, predicted protein orthologs in other six genomes confirmed high conservation of IGs associated with regulating neural processes and with chromatin organization and epigenetic regulation in Vertebrata. Moreover, this study highlights that IGs are essential modulators of regulatory processes, such as the Wnt signaling pathway and biological processes as pivotal as sensory organ developing at a transcriptional and post-translational level. Overall, our results suggest that IG proteins have specialized, prevalent, and unique biological roles and that functional divergence between IGs and MEGs is likely to be the result of specific evolutionary constraints.
Collapse
Affiliation(s)
- Katia Aviña-Padilla
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Centro de Investigacioìn y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, Mexico
| | | | - Gabriel Emilio Herrera-Oropeza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | | | - Dulce I. Valdivia
- Centro de Investigacioìn y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, Mexico
| | - Erik Díaz-Valenzuela
- Centro de Investigacioìn y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, Mexico
| | - Andrés García-García
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | | |
Collapse
|
6
|
MAPK cascade gene family in Camellia sinensis: In-silico identification, expression profiles and regulatory network analysis. BMC Genomics 2020; 21:613. [PMID: 32894062 PMCID: PMC7487466 DOI: 10.1186/s12864-020-07030-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/27/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Mitogen Activated Protein Kinase (MAPK) cascade is a fundamental pathway in organisms for signal transduction. Though it is well characterized in various plants, there is no systematic study of this cascade in tea. RESULT In this study, 5 genes of Mitogen Activated Protein Kinase Kinase (MKK) and 16 genes of Mitogen Activated Protein Kinase (MPK) in Camellia sinensis were found through a genome-wide search taking Arabidopsis thaliana as the reference genome. Also, phylogenetic relationships along with structural analysis which includes gene structure, location as well as protein conserved motifs and domains, were systematically examined and further, predictions were validated by the results. The plant species taken for comparative study clearly displayed segmental duplication, which was a significant candidate for MAPK cascade expansion. Also, functional interaction was carried out in C. sinensis based on the orthologous genes in Arabidopsis. The expression profiles linked to various stress treatments revealed wide involvement of MAPK and MAPKK genes from Tea in response to various abiotic factors. In addition, the expression of these genes was analysed in various tissues. CONCLUSION This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the MAPK cascade regulatory network in C. sinensis.
Collapse
|
7
|
Maheshwari P, Kummari D, Palakolanu SR, Nagasai Tejaswi U, Nagaraju M, Rajasheker G, Jawahar G, Jalaja N, Rathnagiri P, Kavi Kishor PB. Genome-wide identification and expression profile analysis of nuclear factor Y family genes in Sorghum bicolor L. (Moench). PLoS One 2019; 14:e0222203. [PMID: 31536532 PMCID: PMC6752760 DOI: 10.1371/journal.pone.0222203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/24/2019] [Indexed: 01/28/2023] Open
Abstract
Members of the plant Heme Activator Protein (HAP) or NUCLEAR FACTOR Y (NF-Y) are trimeric transcription factor complexes composed of the NF-YA, NF-YB and NF-YC subfamilies. They bind to the CCAAT box in the promoter regions of the target genes and regulate gene expressions. Plant NF-Ys were reported to be involved in adaptation to several abiotic stresses as well as in development. In silico analysis of Sorghum bicolor genome resulted in the identification of a total of 42 NF-Y genes, among which 8 code for the SbNF-YA, 19 for SbNF-YB and 15 for the SbNF-YC subunits. Analysis was also performed to characterize gene structures, chromosomal distribution, duplication status, protein subcellular localizations, conserved motifs, ancestral protein sequences, miRNAs and phylogenetic tree construction. Phylogenetic relationships and ortholog predictions displayed that sorghum has additional NF-YB genes with unknown functions in comparison with Arabidopsis. Analysis of promoters revealed that they harbour many stress-related cis-elements like ABRE and HSE, but surprisingly, DRE and MYB elements were not detected in any of the subfamilies. SbNF-YA1, 2, and 6 were found upregulated under 200 mM salt and 200 mM mannitol stresses. While NF-YA7 appeared associated with high temperature (40°C) stress, NF-YA8 was triggered by both cold (4°C) and high temperature stresses. Among NF-YB genes, 7, 12, 15, and 16 were induced under multiple stress conditions such as salt, mannitol, ABA, cold and high temperatures. Likewise, NF-YC 6, 11, 12, 14, and 15 were enhanced significantly in a tissue specific manner under multiple abiotic stress conditions. Majority of the mannitol (drought)-inducible genes were also induced by salt, high temperature stresses and ABA. Few of the high temperature stress-induced genes are also induced by cold stress (NF-YA2, 4, 6, 8, NF-YB2, 7, 10, 11, 12, 14, 16, 17, NF-YC4, 6, 12, and 13) thus suggesting a cross talk among them. This work paves the way for investigating the roles of diverse sorghum NF-Y proteins during abiotic stress responses and provides an insight into the evolution of diverse NF-Y members.
Collapse
Affiliation(s)
- P. Maheshwari
- Department of Genetics, Osmania University, Hyderabad, India
| | - Divya Kummari
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - U. Nagasai Tejaswi
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - M. Nagaraju
- Department of Genetics, Osmania University, Hyderabad, India
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, India
| | - G. Rajasheker
- Department of Genetics, Osmania University, Hyderabad, India
| | - G. Jawahar
- Department of Genetics, Osmania University, Hyderabad, India
| | - N. Jalaja
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - P. Rathnagiri
- Genomix CARL Pvt. Ltd. Rayalapuram Road, Pulivendula, Kadapa, Andhra Pradesh, India
- Genomix Molecular Diagnostics Pvt Ltd., Kukatpally, Hyderabad, India
- Genomix Biotech Inc., Atlanta, GA, United States of America
| | | |
Collapse
|
8
|
Abstract
Noncoding RNAs (ncRNAs) have received much attention due to their central role in gene expression and translational regulation as well as due to their involvement in several biological processes and disease development. Small noncoding RNAs (sncRNAs), such as microRNAs and piwiRNAs, have been thoroughly investigated and functionally characterized. Long noncoding RNAs (lncRNAs), known to play an important role in chromatin-interacting transcription regulation, posttranscriptional regulation, cell-to-cell signaling, and protein regulation, are also being investigated to further elucidate their functional roles.Next-generation sequencing (NGS) technologies have greatly aided in characterizing the ncRNAome. Moreover, the coupling of NGS technology together with bioinformatics tools has been essential to the genome-wide detection of RNA modifications in ncRNAs. RNA editing, a common human co-transcriptional and posttranscriptional modification, is a dynamic biological phenomenon able to alter the sequence and the structure of primary transcripts (both coding and noncoding RNAs) during the maturation process, consequently influencing the biogenesis, as well as the function, of ncRNAs. In particular, the dysregulation of the RNA editing machineries have been associated with the onset of human diseases.In this chapter we discuss the potential functions of ncRNA editing and describe the knowledge base and bioinformatics resources available to investigate such phenomenon.
Collapse
|
9
|
Goyal RK, Tulpan D, Chomistek N, González-Peña Fundora D, West C, Ellis BE, Frick M, Laroche A, Foroud NA. Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species. BMC Genomics 2018; 19:178. [PMID: 29506469 PMCID: PMC5838963 DOI: 10.1186/s12864-018-4545-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 02/13/2018] [Indexed: 12/16/2022] Open
Abstract
Background The mitogen-activated protein kinase (MAPK) family is involved in signal transduction networks that underpin many different biological processes in plants, ranging from development to biotic and abiotic stress responses. To date this class of enzymes has received little attention in Triticeae species, which include important cereal crops (wheat, barley, rye and triticale) that represent over 20% of the total protein food-source worldwide. Results The work presented here focuses on two subfamilies of Triticeae MAPKs, the MAP kinases (MPKs), and the MAPK kinases (MKKs) whose members phosphorylate the MPKs. In silico analysis of multiple Triticeae sequence databases led to the identification of 152 MAPKs belonging to these two sub-families. Some previously identified MAPKs were renamed to reflect the literature consensus on MAPK nomenclature. Two novel MPKs, MPK24 and MPK25, have been identified, including the first example of a plant MPK carrying the TGY activation loop sequence common to mammalian p38 MPKs. An EF-hand calcium-binding domain was found in members of the Triticeae MPK17 clade, a feature that appears to be specific to Triticeae species. New insights into the novel MEY activation loop identified in MPK11s are offered. When the exon-intron patterns for some MPKs and MKKs of wheat, barley and ancestors of wheat were assembled based on transcript data in GenBank, they showed deviations from the same sequence predicted in Ensembl. The functional relevance of MAPKs as derived from patterns of gene expression, MPK activation and MKK-MPK interaction is discussed. Conclusions A comprehensive resource of accurately annotated and curated Triticeae MPK and MKK sequences has been created for wheat, barley, rye, triticale, and two ancestral wheat species, goat grass and red wild einkorn. The work we present here offers a central information resource that will resolve existing confusion in the literature and sustain expansion of MAPK research in the crucial Triticeae grains. Electronic supplementary material The online version of this article (10.1186/s12864-018-4545-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ravinder K Goyal
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Dan Tulpan
- Information and Communication Technologies, National Research Council of Canada, 100 des Aboiteaux Street, Moncton, New Brunswick, E1A 7R1, Canada
| | - Nora Chomistek
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Dianevys González-Peña Fundora
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Connor West
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Brian E Ellis
- Michael Smith Laboratories, University of British Columbia, #301 - 2185 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Michele Frick
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - André Laroche
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada.
| |
Collapse
|
10
|
Liu Y, Yao Y, Hu X, Xing S, Xu L. Cloning and allelic variation of two novel catalase genes (SoCAT-1andSsCAT-1) inSaccharum officinarumL. andSaccharum spontaneumL. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1018839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
11
|
Shin SH, Choi SS. Lengths of coding and noncoding regions of a gene correlate with gene essentiality and rates of evolution. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0265-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Johansson LE, Hoffstedt J, Parikh H, Carlsson E, Wabitsch M, Bondeson AG, Hedenbro J, Tornqvist H, Groop L, Ridderstråle M. Variation in the adiponutrin gene influences its expression and associates with obesity. Diabetes 2006; 55:826-33. [PMID: 16505250 DOI: 10.2337/diabetes.55.03.06.db05-1075] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adiponutrin is one of three recently identified adipocyte lipases. Surprisingly, these proteins also retain transacylase activity, a hitherto unknown pathway of triacylglycerol synthesis in the adipocytes. This may enable them to participate in both anabolic and catabolic processes. The adiponutrin gene (ADPN) is downregulated by fasting and upregulated by refeeding, suggesting a role in lipogenesis. Experiments in human adipocytes confirmed that the gene is upregulated in response to insulin in a glucose-dependent fashion. Obese subjects had increased levels of subcutaneous and visceral abdominal adipose tissue ADPN mRNA. Visceral ADPN mRNA expression was correlated to measures of insulin sensitivity (fasting insulin and homeostasis model assessment). We also studied genetic variation in ADPN and its relation to obesity, lipolysis, and mRNA expression. Two ADPN polymorphisms showed association with obesity. Carriers of the obesity-associated variants showed a lesser increase in the levels of adipose tissue ADPN mRNA and an increased basal lipolysis. Our results suggest that obese subjects that are insulin resistant and/or carriers of the obesity-associated ADPN alleles fail to upregulate the gene and that upregulation of adiponutrin may be an appropriate response to orchestrate energy excess.
Collapse
Affiliation(s)
- Lovisa E Johansson
- Department of Clinical Sciences Malmö, Clinical Obesity, Lund University, University Hospital MAS, S-205 02 Malmö, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|