1
|
Chu S, Zhao T, Li M, Sun Y, Yang Y, Yang Z. Long non-coding RNA (CMR) involved in autoprotection in S. aureus mastitis in dairy cows by regulating miR-877/FOXM1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116456. [PMID: 38744067 DOI: 10.1016/j.ecoenv.2024.116456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Long non-coding RNAs (LncRNAs) are dysregulated in a variety of human diseases and are highly involved in the development and progression of tumors. Studies on lncRNAs associated with cow mastitis have been lagging behind compared to humans or model animals, therefore, the aim of this study was to explore the mechanism of LncRNAs (CMR) involved in autoprotection against S. aureus mastitis in Bovine Mammary Epithelial Cells (BMECs). First, qRT-PCR was used to examine the relative expression of CMR in a S. aureus mastitis model of BMECs. Then, cell proliferation and apoptosis were detected by EdU and apoptosis assay. Finally, the targeting relationship between miRNAs and mRNA/LncRNAs was determined by dual luciferase reporter gene, qRT-PCR and western blotting techniques. The results showed that CMR was upregulated in the S. aureus mastitis model of BMECs and promoted the expression of inflammatory factors, and SiRNA-mediated CMR inhibited the proliferation of mammary epithelial cells and induced apoptosis. Mechanistically, CMR acts as a competitive endogenous RNA (ceRNA) sponge miR-877, leading to upregulation of FOXM1, a target of miR-877. Importantly, either miR-877 overexpression or FOXM1 inhibition abrogated CMR knockdown-induced apoptosis promoting cell proliferation and reducing inflammatory factor expression levels. In summary, CMR is involved in the regulation of autoprotection against S. aureus mastitis through the miR-877/FOXM1 axis in BMECs and induces immune responses in mammary tissues and cells of dairy cows, providing an important reference for subsequent prevention and control of cow mastitis and the development of targeted drugs.
Collapse
Affiliation(s)
- Shuangfeng Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Tianqi Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Mingxun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yujia Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yi Yang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Yangzhou University, College of Veterinary Medicine, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Preliminary Transcriptome Analysis of Long Noncoding RNA in Hypothalamic-Pituitary-Mammary Gland Axis of Dairy Cows under Heat Stress. Biomolecules 2023; 13:biom13020390. [PMID: 36830759 PMCID: PMC9953101 DOI: 10.3390/biom13020390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Heat stress (HS) is directly correlated to mammary gland dysfunction in dairy cows, especially in summer. The hypothalamic-pituitary-mammary gland axis (HPM axis) plays an important role in the regulation of stress response and lactation physiology in heat-stressed dairy cows. The aim of this study was to explore the lncRNA profile, and the competitive endogenous RNA (ceRNA) regulatory network in hypothalamus, pituitary, and mammary gland tissues of heat-stressed and normal dairy cows. We performed RNA sequencing (RNA-seq) to identify differentially expressed (DE) lncRNAs, and the ceRNA regulatory network was established in HPM-axis-related tissues. Our results showed that a total of 13, 702 and 202 DE lncRNAs were identified in hypothalamus, pituitary, and mammary glands, respectively. Of lncRNAs, 8, 209 and 45 were up-regulated, and 5, 493 and 157 lncRNAs were down-regulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that DE lncRNAs target genes that might play a role in hormone synthesis, secretion and action, apoptosis, mitogen-activated protein kinase (MAPK), AMP-activated protein kinase (AMPK), and mechanistic target of rapamycin (mTOR) signaling pathway. Moreover, the ceRNA regulatory network associated with the MAPK signaling pathway in HPM-axis-related tissues contains 3286 lncRNA-mRNA pairs. Furthermore, the ceRNA regulatory network associated with apoptosis, prolactin, AMPK, and mTOR signaling pathway in the mammary gland contains 772 lncRNA-mRNA pairs. Thus, some lncRNAs may be involved in the regulation of stress response and the physiological process of lactation. The changes in lncRNA expression profiles and ceRNAs (lncRNA-miRNA-mRNA) in HPM-axis-related tissues are the key to affect the stress response and lactation physiology of dairy cows under HS, which provide a theoretical basis for the molecular mechanism in the stress response of HPM-axis-related tissues in dairy cows under HS.
Collapse
|
3
|
Duman E, Özmen Ö, Kul S. Oar-miR-16b and oar-miR-27a: negatively correlated with milk yield and milk protein in sheep. Anim Biotechnol 2022; 33:1466-1479. [PMID: 33840373 DOI: 10.1080/10495398.2021.1908317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The characterization of miRNAs from sheep milk and their effect on milk yield and composition in sheep are remain unclear. Therefore, the aim of this study was to determine the expression pattern of several important miRNAs, which are associated with lactation in the sheep milk between high and low lactating-yield ewe groups. In addition to experimentally obtained miRNA expression results, the miRNA target genes were determined by bioinformatics analysis to identify biological pathways involved. miRNAs found to differ significantly in the expression level between the groups were oar-miR-181a, oar-miR-23a, oar-miR-27a, oar-miR-16b and oar-miR-374. Also, oar-miR-27a was shown negative correlation with milk protein and lactose contents while oar-miR-16b was shown negative correlation with milk yield in the high milk yield group. The highest connected hub genes for miR-27a target genes were determined as MAPK14 and PPARG. Also, six genes (HSPA4L, DNAJA2, ATP6V1B2, PPP2R1A, PPP2R1B, and PRKAR2A) were detected as hub genes for miR-16b. In this study, the relationship between expression profiles of several important miRNAs in sheep milk and milk yield and milk composition were investigated for the first time in high and low lactating yield groups.
Collapse
Affiliation(s)
- Esra Duman
- Department of Veterinary Medicine and Laboratory, Tokat Gaziosmanpaşa University, Artova Vocational School, Tokat, Turkey
| | - Özge Özmen
- Faculty of Veterinary Medicine, Department of Genetics, Ankara University, Ankara, Turkey
| | - Selim Kul
- Faculty of Veterinary Medicine, Department of Animal Breeding, Fırat University, Elazig, Turkey
| |
Collapse
|
4
|
Xuan R, Zhao X, Li Q, Zhao Y, Wang Y, Du S, Duan Q, Guo Y, Ji Z, Chao T, Wang J. Characterization of long noncoding RNA in nonlactating goat mammary glands reveals their regulatory role in mammary cell involution and remodeling. Int J Biol Macromol 2022; 222:2158-2175. [DOI: 10.1016/j.ijbiomac.2022.09.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
|
5
|
Oyelami FO, Usman T, Suravajhala P, Ali N, Do DN. Emerging Roles of Noncoding RNAs in Bovine Mastitis Diseases. Pathogens 2022; 11:pathogens11091009. [PMID: 36145441 PMCID: PMC9501195 DOI: 10.3390/pathogens11091009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are an abundant class of RNA with varying nucleotide lengths. They have been shown to have great potential in eutherians/human disease diagnosis and treatments and are now gaining more importance for the improvement of diseases in livestock. To date, thousands of ncRNAs have been discovered in the bovine genome and the continuous advancement in deep sequencing technologies and various bioinformatics tools has enabled the elucidation of their roles in bovine health. Among farm animals' diseases, mastitis, a common inflammatory disease in cattle, has caused devastating economic losses to dairy farmers over the last few decades. Here, we summarize the biology of bovine mastitis and comprehensively discuss the roles of ncRNAs in different types of mastitis infection. Based on our findings and relevant literature, we highlighted various evidence of ncRNA roles in mastitis. Different approaches (in vivo versus in vitro) for exploring ncRNA roles in mastitis are emphasized. More particularly, the potential applications of emerging genome editing technologies, as well as integrated omics platforms for ncRNA studies and implications for mastitis are presented.
Collapse
Affiliation(s)
- Favour Oluwapelumi Oyelami
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Tahir Usman
- College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan 23200, KP, Pakistan
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana 690525, Kerala, India
| | - Nawab Ali
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, KP, Pakistan
| | - Duy N. Do
- Faculty of Veterinary Medicine, Viet Nam National University of Agriculture, Hanoi 100000, Vietnam
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Correspondence: ; Tel.: +1-9029578789
| |
Collapse
|
6
|
Ahmad SM, Bhat B, Manzoor Z, Dar MA, Taban Q, Ibeagha-Awemu EM, Shabir N, Hussain MI, Shah RA, Ganai NA. Genome wide expression analysis of circular RNAs in mammary epithelial cells of cattle revealed difference in milk synthesis. PeerJ 2022; 10:e13029. [PMID: 35251787 PMCID: PMC8896013 DOI: 10.7717/peerj.13029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/08/2022] [Indexed: 01/11/2023] Open
Abstract
Milk is an excellent source of nutrients for humans. Therefore, in order to enhance the quality and production of milk in cattle, it is interesting to examine the underlying mechanisms. A number of new investigations and research have found that, circRNA; a specific class of non-coding RNAs, is linked with the development of mammary gland and lactation. In the present study, genome wide identification and expression of the circRNAs in mammary epithelial cells of two distinct cattle breeds viz Jersey and Kashmiri at peak lactation was conducted. We reported 1554 and 1286 circRNA in Jersey and Kashmiri cattle, respectively, with 21 circRNAs being differentially expressed in the two breeds. The developmental genes of the established differentially expressed circRNAs were found to be largely enriched in antioxidant activity, progesterone, estradiol, lipid, growth hormone, and drug response. Certain pathways like MAPK, IP3K and immune response pathways were found significantly enriched in KEGG analysis. These results add to our understanding of the controlling mechanisms connected with the lactation process, as well as the function of circRNAs in bovine milk synthesis. Additionally, the comparative analysis of differentially expressed circRNAs showed significant conservation across different species.
Collapse
Affiliation(s)
- Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Basharat Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Zainab Manzoor
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mashooq Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India,Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Qamar Taban
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Mohd Isfaqul Hussain
- Division of Veterinary Microbiology, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Riaz A. Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Nazir A. Ganai
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
7
|
Lu Q, Chen Z, Ji D, Mao Y, Jiang Q, Yang Z, Loor JJ. Progress on the Regulation of Ruminant Milk Fat by Noncoding RNAs and ceRNAs. Front Genet 2021; 12:733925. [PMID: 34790222 PMCID: PMC8591074 DOI: 10.3389/fgene.2021.733925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Milk fat is not only a key factor affecting the quality of fresh milk but also a major target trait forbreeding. The regulation of milk fat involves multiple genes, network regulation and signal transduction. To explore recent discoveries of pathway regulation, we reviewed the published literature with a focus on functional noncoding RNAs and epigenetic regulation in ruminants. Results indicate that miRNAs play key roles in the regulation of milk fat synthesis and catabolism in ruminants. Although few data are available, merging evidence indicates that lncRNAs and circRNAs act on milk fat related genes through indirect action with microRNAs or RNAs in the ceRNA network to elicit positive effects on transcription. Although precise regulatory mechanisms remain unclear, most studies have focused on the regulation of the function of target genes through functional noncoding RNAs. Data to help identify factors that can regulate their own expression and function or to determine whether self-regulation involves positive and/or negative feedback are needed. Despite the growing body of research on the role of functional noncoding RNA in the control of ruminant milk fat, most data are still not translatable for field applications. Overall, the understanding of mechanisms whereby miRNA, lncRNA, circRNA, and ceRNA regulate ruminant milk fat remains an exciting area of research.
Collapse
Affiliation(s)
- QinYue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Dejun Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qianming Jiang
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
8
|
Wu F, Zhi X, Xu R, Liang Z, Wang F, Li X, Li Y, Sun B. Exploration of microRNA profiles in human colostrum. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1170. [PMID: 33241019 PMCID: PMC7576086 DOI: 10.21037/atm-20-5709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Colostrum is well known to have excellent nutritional value for newborns. The aim of this study was to investigate the dynamic expression pattern of microRNA in human colostrum and mature milk. Furthermore, we identified the specific microRNA in human colostrum and analyzed the regulatory function of human colostrum. Methods We collected breast milk samples from 18 lactating volunteers. The expression of microRNA in breast milk was detected by microarray analysis. The expression differences were characterized by log2FC (|log2fold change| >1.58) and associated P values (P<0.05). Furthermore, the prediction of microRNA targets, bioinformatics analysis and network generation were carried out using network database. Results Our results showed that during the human lactation process, the composition of microRNAs in human milk changes dynamically. Compared to the microRNA expression profile in human mature milk, the expression levels of 49 microRNAs were significantly different and 67 microRNAs were specifically expressed in human colostrum. Based on the results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, the predicted target mRNAs of the identified colostrum-specific microRNAs were involved in the regulation of distinct biological processes, such as signal transduction, positive regulation of GTPase activity, and protein phosphorylation. Moreover, the predicted mRNA targets were from large spectrums of signaling pathways, such as the MAPK, Ras, Hippo, Wnt, and mTOR signaling pathways, as well as the longevity regulating pathway. Conclusions Our study illuminates the landscape of microRNA expressions in human colostrum and mature milk, and emphasizes the value of microRNAs as nutritional additives in milk-related commercial products.
Collapse
Affiliation(s)
- Fei Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xinyue Zhi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Rong Xu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhiyi Liang
- Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Fang Wang
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoyu Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yongmei Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Patil S, Dang K, Zhao X, Gao Y, Qian A. Role of LncRNAs and CircRNAs in Bone Metabolism and Osteoporosis. Front Genet 2020; 11:584118. [PMID: 33281877 PMCID: PMC7691603 DOI: 10.3389/fgene.2020.584118] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bone is a mechanosensitive organ that provides strength and support. Many bone cells, various pathways, and signaling molecules coordinate bone metabolism and also determine the course of bone diseases, such as osteoporosis, osteonecrosis, osteopenia, etc. Osteoporosis is caused by increased bone resorption and reduced bone formation due to the changes in the level of different proteins and RNAs in osteoclast or/and osteoblasts. The available therapeutic interventions can significantly reduce bone resorption or enhance bone formation, but their prolonged use has deleterious side effects. Therefore, the use of non-coding RNAs as therapeutics has emerged as an interesting field of research. Despite advancements in the molecular field, not much is known about the role of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in bone homeostasis and osteoporosis. Therefore, in this article, we summarize the role of lncRNAs and circRNAs in different bone cells and osteoporosis so that it might help in the development of osteoporotic therapeutics.
Collapse
Affiliation(s)
- Suryaji Patil
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Kai Dang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xin Zhao
- School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi'an, China
| | - Yongguang Gao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Department of Chemistry, Tangshan Normal University, Tangshan, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
10
|
Zandi E, Ayatollahi Mehrgardi A, Esmailizadeh A. Mammary tissue transcriptomic analysis for construction of integrated regulatory networks involved in lactogenesis of Ovis aries. Genomics 2020; 112:4277-4287. [PMID: 32693106 DOI: 10.1016/j.ygeno.2020.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
The mammary gland experiences vast changes between the onset of lactation and pregnancy. This remodeling involves different functions such as lactation that is controlled by innumerable regulators and various gene networks which are still not completely understood. MicroRNAs (miRNAs) are one of the important non-coding gene regulators which control an extensive range of biological processes. Thus, exploring miRNAs functions is important for solving gene regulation complexity. The main purpose in the present study is to identify the various gene regulative integrated networks involved in lactation progress in mammary gland. We analyzed ovine mammary tissue data sets which included expression profiles of mRNA (genes) and miRNAs related to six ewes in different days of lactation and nutritional treatments. We combined two different types of information: the network that is module inference by mRNAs (RNA-seq data), miRNAs and transcription factors (TFs) expression matrix and prediction of targets via computational methods. To discover the miRNAs regulatory function, 134 modules were predicted by using gene expression data and 14 TFs and 20 miRNAs were allocated to these predicted modules. By applying this integrated computation-based method, 38 miRNA-modules and 35 TF-module interactions were identified from ovine mammary tissue data during lactogenesis. A lot of these modules were involved in lipid and protein metabolism, as well as steroids and vitamin biosynthesis, which would play key roles in mammary tissue and lactation development. These results present new information about the regulatory procedures at the miRNAs and TF levels throughout lactation.
Collapse
Affiliation(s)
- Elmira Zandi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran; Yong Researchers Society, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran.
| |
Collapse
|
11
|
Ruan J, Wang S, Wang J. Mechanism and regulation of pyroptosis-mediated in cancer cell death. Chem Biol Interact 2020; 323:109052. [PMID: 32169591 DOI: 10.1016/j.cbi.2020.109052] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022]
Abstract
Pyroptosis, a form of programmed cell death, has garnered increasing attention as it relates to innate immunity and diseases. The discovery of caspase-1/3/4/5/8/11 function in sensing various challenges expands the spectrum of pyroptosis mediators and also reveals that pyroptosis is not cell type specific. Recent studies have identified that pyroptosis has become a new topic in cancer research because it may affect all stages of carcinogenesis. In this mini-review, we provided a primer on pyroptosis, discussed the induction of pyroptosis in cancer and its implications in cancer management. Moreover, its two important executioners, the gasdermin D (GSDMD) and gasdermin E (GSDME), the functions and mechanisms of them involved in the regulation of cancer therapy were focused on. Small molecules-mediated pyroptosis were found to effectively inhibit various tumor cells. In brief, the findings of pyroptosis-dependent cancer progression, new drugs and therapeutic targets may lead to a promising, novel therapeutic approach for cancer patients.
Collapse
Affiliation(s)
- Jianwei Ruan
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, China.
| | - Shijian Wang
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, China
| | - Jiabing Wang
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
12
|
|
13
|
Chi-miR-3031 regulates beta-casein via the PI3K/AKT-mTOR signaling pathway in goat mammary epithelial cells (GMECs). BMC Vet Res 2018; 14:369. [PMID: 30482199 PMCID: PMC6258393 DOI: 10.1186/s12917-018-1695-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs can regulate gene expression at the posttranscriptional level through translational repression or target degradation. Our previous investigations examined the differential expression levels of chi-miR-3031 in caprine mammary gland tissues in colostrum and common milk stages. RESULTS The present study detected the role of chi-miR-3031 in the lactation mechanisms of GMECs. High-throughput sequencing was used to analyze transcriptomic landscapes of GMECs transfected with chi-miR-3031 mimics (MC) and a mimic negative control (NC). In the MC and NC groups, we acquired 39,793,503 and 36,531,517 uniquely mapped reads, respectively, accounting for 85.85 and 81.66% of total reads. In the MC group, 180 differentially expressed unigenes were downregulated, whereas 157 unigenes were upregulated. KEGG pathway analyses showed that the prolactin, TNF and ErbB signaling pathways, including TGFα, PIK3R3, IGF2, ELF5, IGFBP5 and LHβ genes, played important roles in mammary development and milk secretion. Results from transcriptome sequencing, real-time PCR and western blotting showed that chi-miR-3031 suppressed the expression of IGFBP5 mRNA and protein. The expression levels of β-casein significantly increased in the MC and siRNA-IGFBP5 groups. We observed that the down-regulation of IGFBP5 activated mTOR at the Ser2448 site in GMECs transfected with MC and siRNA-IGFBP5. Previous findings and our results showed that chi-miR-3031 activated the PI3K-AKT-mTOR pathway and increased β-casein expression by down-regulating IGFBP5. CONCLUSIONS These findings will afford valuable information for improving milk quality and contribute the development of potential methods for amending lactation performance.
Collapse
|
14
|
Zheng X, Ning C, Zhao P, Feng W, Jin Y, Zhou L, Yu Y, Liu J. Integrated analysis of long noncoding RNA and mRNA expression profiles reveals the potential role of long noncoding RNA in different bovine lactation stages. J Dairy Sci 2018; 101:11061-11073. [PMID: 30268606 DOI: 10.3168/jds.2018-14900] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Long noncoding RNA (lncRNA) play a critical role in mammary development and breast cancer biology. Despite their important role in the mammary gland, little is known of the roles of lncRNA in bovine lactation, particularly regarding the molecular processes underlying it. To characterize the role of lncRNA in bovine lactation, 4 samples of Holstein cow mammary gland tissue at peak and late lactation stages were examined after biopsy. We then profiled the transcriptome of the mammary gland using RNA sequencing technology. Further, functional lncRNA-mRNA coexpression pairs were constructed to infer the function of lncRNA using a generalized linear model, followed by gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. More than 1,000 putative lncRNA were identified, 117 of which were differentially expressed between peak and late lactation stages. Bovine lncRNA were shorter, with fewer exon numbers, and expressed at significantly lower levels than protein-coding genes. Seventy-two differentially expressed (DE) lncRNA were coexpressed with 340 different protein-coding genes. The KEGG pathway analysis showed that target mRNA for DE lncRNA were mainly related to lipid and glucose metabolism, including the peroxisome proliferator-activated receptors and 5' adenosine monophosphate-activated protein kinase signaling pathways. Further bioinformatics and integrative analyses revealed that 12 DE lncRNA potentially played important roles in bovine lactation. Our findings provide a valuable resource for future bovine transcriptome studies, facilitate the understanding of bovine lactation biology, and offer functional information for cattle lactation.
Collapse
Affiliation(s)
- X Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - C Ning
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - P Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - W Feng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Y Jin
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - L Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Y Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - J Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
MiR-29b-1-5p is altered in BRCA1 mutant tumours and is a biomarker in basal-like breast cancer. Oncotarget 2018; 9:33577-33588. [PMID: 30323900 PMCID: PMC6173367 DOI: 10.18632/oncotarget.26094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Depletion of BRCA1 protein in mouse mammary glands results in defects in lactational development and increased susceptibility to mammary cancer. Extensive work has focussed on the role of BRCA1 in the normal breast and in the development of breast cancer, the cell of origin for BRCA1 tumours and the protein-coding genes altered in BRCA1 deficient cells. However, the role of non-coding RNAs in BRCA1-deficient cells is poorly understood. To evaluate miRNA expression in BRCA1 deficient mammary cells, RNA sequencing was performed on the mammary glands of Brca1 knockout mice. We identified 140 differentially expressed miRNAs, 9 of which were also differentially expressed in human BRCA1 breast tumours or familial non-BRCA1 patients and during normal gland development. We show that BRCA1 binds to putative cis-elements in promoter regions of the miRNAs with the potential to regulate their expression, and that four miRNAs (miR-29b-1-5p, miR-664, miR-16-2 and miR-744) significantly stratified the overall survival of basal-like tumours. Importantly the prognostic value of miR-29b-1-5p was higher in significance than several commonly used clinical biomarkers. These results emphasise the role of Brca1 in modulating expression of miRNAs and highlights the potential for BRCA1 regulated miRNAs to be informative biomarkers associated with BRCA1 loss and survival in breast cancer.
Collapse
|
16
|
Ong MS, Cai W, Yuan Y, Leong HC, Tan TZ, Mohammad A, You ML, Arfuso F, Goh BC, Warrier S, Sethi G, Tolwinski NS, Lobie PE, Yap CT, Hooi SC, Huang RY, Kumar AP. 'Lnc'-ing Wnt in female reproductive cancers: therapeutic potential of long non-coding RNAs in Wnt signalling. Br J Pharmacol 2017; 174:4684-4700. [PMID: 28736855 PMCID: PMC5727316 DOI: 10.1111/bph.13958] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
Recent discoveries in the non-coding genome have challenged the original central dogma of molecular biology, as non-coding RNAs and related processes have been found to be important in regulating gene expression. MicroRNAs and long non-coding RNAs (lncRNAs) are among those that have gained attention recently in human diseases, including cancer, with the involvement of many more non-coding RNAs (ncRNAs) waiting to be discovered. ncRNAs are a group of ribonucleic acids transcribed from regions of the human genome, which do not become translated into proteins, despite having essential roles in cellular physiology. Deregulation of ncRNA expression and function has been observed in cancer pathogenesis. Recently, the roles of a group of ncRNA known as lncRNA have gained attention in cancer, with increasing reports of their oncogenic involvement. Female reproductive cancers remain a leading cause of death in the female population, accounting for almost a third of all female cancer deaths in 2016. The Wnt signalling pathway is one of the most important oncogenic signalling pathways which is hyperactivated in cancers, including female reproductive cancers. The extension of ncRNA research into their mechanistic roles in human cancers has also led to novel reported roles of ncRNAs in the Wnt pathway and Wnt-mediated oncogenesis. This review aims to provide a critical summary of the respective roles and cellular functions of Wnt-associated lncRNAs in female reproductive cancers and explores the potential of circulating cell-free lncRNAs as diagnostic markers and lncRNAs as therapeutic targets. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Mei S Ong
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Wanpei Cai
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Yi Yuan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Hin C Leong
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Tuan Z Tan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Asad Mohammad
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Ming L You
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Boon C Goh
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Department of Haematology‐OncologyNational University Health SystemSingapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal UniversityBangaloreIndia
- School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Gautam Sethi
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Nicholas S Tolwinski
- Division of ScienceYale‐NUS CollegeSingapore
- Department of Biological ScienceNational University of SingaporeSingapore
| | - Peter E Lobie
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Departments of Anatomy, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Tsinghua Berkeley Shenzhen Institute and Division of Life Science and HealthTsinghua University Graduate SchoolShenzhenChina
| | - Celestial T Yap
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
| | - Shing C Hooi
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Ruby Y Huang
- Departments of Anatomy, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Department of Obstetrics and GynaecologyNational University HospitalSingapore
| | - Alan P Kumar
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal UniversityBangaloreIndia
- Curtin Medical School, Faculty of Health ScienceCurtin UniversityPerthWAAustralia
- Department of Biological SciencesUniversity of North TexasDentonTXUSA
| |
Collapse
|
17
|
Yu S, Zhao Y, Lai F, Chu M, Hao Y, Feng Y, Zhang H, Liu J, Cheng M, Li L, Shen W, Min L. LncRNA as ceRNAs may be involved in lactation process. Oncotarget 2017; 8:98014-98028. [PMID: 29228670 PMCID: PMC5716710 DOI: 10.18632/oncotarget.20439] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/18/2017] [Indexed: 11/25/2022] Open
Abstract
The main function of the mammary gland is to secret milk for newborn growth. Milk production process is regulated by hormones, growth factors, noncoding RNAs and other factors locally. Long non-coding RNAs (lncRNAs), one type of recently discovered non-coding RNA, have been found in mammary gland and some studies suggested lncRNA may play important roles in mammary gland development. Competing endogenous RNAs (ceRNAs) are emerging to compete for miRNA binding and, in turn, regulate each other. In the current study, we sequenced mRNA, miRNA and lncRNA in goat mammary tissue at 2 points in lactation (early and mature). All data were co-expressed together from the same samples. Our data showed that the ceRNAs up-regulated during the mature lactation phase were associated with lipid, protein, carbon and amino acid synthesis and metabolism. This correlates with the function of the mature lactation phase: i.e. the continuous production of large amounts of milk, rich in proteins, lipids, amino acids and other nutrients. Alternately, the ceRNAs up-regulated during early lactation were associated with PI3K-AKT pathways and ECM-receptor interactions; these fulfil the functional role of preparing the mammary gland for full lactation. Therefore, the results suggest that ceRNAs work synergistically during different developmental stages to regulate specific functions associated with lactation control. This study suggests that ceRNAs (lncRNA-mRNA) may be involved in lactation process.
Collapse
Affiliation(s)
- Shuai Yu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Fangnong Lai
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Meiqiang Chu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yanan Hao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yanni Feng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jing Liu
- Core Laboratories of Qingdao Agricultural University, Qingdao, P. R. China
| | - Ming Cheng
- Qingdao Veterinary and Livestock Administration, Qingdao, P.R. China
| | - Lan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Wei Shen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| |
Collapse
|
18
|
The roles of ncRNAs in the diagnosis, prognosis and clinicopathological features of breast cancer: a systematic review and meta-analysis. Oncotarget 2017; 8:81215-81225. [PMID: 29113381 PMCID: PMC5655276 DOI: 10.18632/oncotarget.20149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/12/2017] [Indexed: 01/08/2023] Open
Abstract
Background A number of studies have shown that noncoding RNAs (ncRNAs) are abnormally expressed in breast cancers. However, the roles of ncRNAs remain unclear in breast cancer. Here, we aim to investigate the potential diagnostic and prognostic roles of ncRNAs in breast cancer. Methods Comprehensive literature search in Medline and Web of Science and a meta-analysis were performed to identify the association between ncRNAs and diagnosis, prognosis, and clinicopathological features of breast cancer. Results A total of 103 eligible studies, involving16, 828 independent participants, were included in the meta-analysis. In total, there were 98 individual and 11 grouped ncRNAs. 51 studies were eligible for survival analysis, 27 studies were eligible for diagnostic analysis, and 46 studies were eligible for clinicopathological features analysis. The abnormal expression of ncRNAs is associated with OS, RFS and PFS in breast cancer patients. For the diagnosis value of ncRNAs, the pooled OR and 95% CI for sensitivity, specificity, DOR and AUC on all ncRNAs were 0.83 [95% CI: 0.82- 0.84], 0.80 [95% CI: 0.79- 0.82], 24.77 [95% CI: 17.44- 35.16] and 0.9037, respectively. The analysis showed that downregulation of ncRNAs in breast cancer was associated with decreased risk of LNM, increased tumor size and PR expression, whereas, upregulation of ncRNAs was associated with increased HER2 expression. Conclusions High expression of ncRNAs was associated with poor OS, RFS, and PFS, while low expression of ncRNAs was related to favorable OS and RFS. Meanwhile, ncRNAs have potential diagnostic value for breast cancer.
Collapse
|
19
|
Wang H, Shi H, Luo J, Yi Y, Yao D, Zhang X, Ma G, Loor JJ. MiR-145 Regulates Lipogenesis in Goat Mammary Cells Via Targeting INSIG1 and Epigenetic Regulation of Lipid-Related Genes. J Cell Physiol 2016; 232:1030-1040. [PMID: 27448180 DOI: 10.1002/jcp.25499] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/21/2016] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression at the post-transcriptional level to cause translational repression or degradation of targets. The profiles of miRNAs across stages of lactation in small ruminant species such as dairy goats is unknown. A small RNA library was constructed using tissue samples from mammary gland of Saanen dairy goats harvested at mid-lactation followed by sequencing via Solexa technology. A total of 796 conserved miRNAs, 263 new miRNAs, and 821 pre-miRNAs were uncovered. After comparative analyses of our sequence data with published mammary gland transcriptome data across different stages of lactation, a total of 37 miRNAs (including miR-145) had significant differences in expression over the lactation cycle. Further studies revealed that miR-145 regulates metabolism of fatty acids in goat mammary gland epithelial cells (GMEC). Compared with nonlactating mammary tissue, lactating mammary gland had a marked increase in expression of miR-145. Overexpression of miR-145 increased transcription of genes associated with milk fat synthesis resulting in greater fat droplet formation, triacylglycerol accumulation, and proportion of unsaturated fatty acids. In contrast, silencing of miR-145 impaired fatty acid synthesis. Inhibition of miR-145 increased methylation levels of fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), peroxisome proliferator-activated receptor gamma (PPARG), and sterol regulatory element binding transcription factor 1 (SREBF1). Luciferase reporter assays confirmed that insulin induced gene 1 (INSIG1) is a direct target of miR-145. These findings underscore the need for further studies to evaluate the potential for targeting miR-145 for improving beneficial milk components in ruminant milk. J. Cell. Physiol. 232: 1030-1040, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hui Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yongqing Yi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Dawei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xueying Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Gongzhen Ma
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois
| |
Collapse
|
20
|
Zhang G, Wu Y, Xu D, Yan X. Long Noncoding RNA UFC1 Promotes Proliferation of Chondrocyte in Osteoarthritis by Acting as a Sponge for miR-34a. DNA Cell Biol 2016; 35:691-695. [PMID: 27529373 DOI: 10.1089/dna.2016.3397] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common prevalent chronic joint diseases. Emerging pieces of evidence have demonstrated that chondrocytes survival was closely associated with the destruction of joints in OA patients. Long noncoding RNAs (lncRNAs), defined as >200 nucleotides in length, also have been implicated in a variety of disease states. However, there are few studies on the role of lncRNAs in OA, and the pathological contributions of lncRNAs to OA remain largely unknown. In this study, we examined the expression of lncRNA UFC1 in cartilage samples from OA patients and healthy subjects, and then investigated biological function of UFC1 in OA chondrocyte. We found that the UFC1 was significantly reduced in OA patients. Functional assays demonstrated that UFC1 promotes chondrocytes proliferation and inhibits cell apoptosis. Furthermore, we found that UFC1 regulates survival of OA chondrocytes through physically association with miR-34a. Taken together, our data highlight the important roles of lncRNA UFC1 in the survival of OA chondrocytes. UFC1 may be a potential therapy for OA.
Collapse
Affiliation(s)
- Gang Zhang
- 1 Department of Articular Surgery, Qianfoshan Hospital of Shandong University , Jinan, China .,2 Affiliated Hospital of Taishan Medical University , Taian, China
| | - Yadi Wu
- 3 College of Sports Medicine and Rehabilitation, Taishan Medical University , Taian, China
| | - Dong Xu
- 2 Affiliated Hospital of Taishan Medical University , Taian, China
| | - Xinfeng Yan
- 1 Department of Articular Surgery, Qianfoshan Hospital of Shandong University , Jinan, China
| |
Collapse
|