1
|
Ćorović MZ, Belaj F, Mösch-Zanetti NC. Dioxygen Activation by a Bioinspired Tungsten(IV) Complex. Inorg Chem 2023; 62:5669-5676. [PMID: 36989414 PMCID: PMC10091480 DOI: 10.1021/acs.inorgchem.3c00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
An increasing number of discovered tungstoenzymes raises interest in the biomimetic chemistry of tungsten complexes in oxidation states +IV, +V, and +VI. Bioinspired (sulfur-rich) tungsten(VI) dioxido complexes are relatively prevalent in literature. Still, their energetically demanding reduction directly correlates with a small number of known tungsten(IV) oxido complexes, whose chemistry is not well explored. In this paper, a reduction of the [WO2(6-MePyS)2] (6-MePyS = 6-methylpyridine-2-thiolate) complex with PMe3 to a phosphine-stabilized tungsten(IV) oxido complex [WO(6-MePyS)2(PMe3)2] is described. This tungsten(IV) complex partially releases one PMe3 ligand in solution, creating a vacant coordination site capable of activating dioxygen to form [WO2(6-MePyS)2] and OPMe3. Therefore, [WO2(6-MePyS)2] can be used as a catalyst for the aerobic oxidation of PMe3, rendering this complex a rare example of a tungsten system utilizing dioxygen in homogeneous catalysis. Additionally, the investigation of the reactivity of the tungsten(IV) oxido complex with acetylene, substrate of a tungstoenzyme acetylene hydratase (AH), revealed the formation of the tungsten(IV) acetylene adduct. Although this adduct was previously reported as an oxidation product of the tungsten(II) acetylene carbonyl complex, here it is obtained via substitution at the sulfur-rich tungsten(IV) center, mimicking the initial step of the first shell mechanism for AH as suggested by computational studies.
Collapse
Affiliation(s)
- Miljan Z Ćorović
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | | |
Collapse
|
2
|
Acetylenotrophic and Diazotrophic
Bradyrhizobium
sp. Strain I71 from TCE-Contaminated Soils. Appl Environ Microbiol 2022; 88:e0121922. [PMID: 36286524 PMCID: PMC9680620 DOI: 10.1128/aem.01219-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isolation of
Bradyrhizobium
strain I71 expands the distribution of acetylene-consuming microbes to include a group of economically important microorganisms. Members of
Bradyrhizobium
are well studied for their abilities to improve plant health and increase crop yields by providing bioavailable nitrogen.
Collapse
|
3
|
Ehweiner MA, Belaj F, Kirchner K, Mösch-Zanetti NC. Synthesis and Reactivity of a Bioinspired Molybdenum(IV) Acetylene Complex. Organometallics 2021; 40:2576-2583. [PMID: 34393319 PMCID: PMC8356224 DOI: 10.1021/acs.organomet.1c00289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/29/2022]
Abstract
![]()
The isolation of
a molybdenum(IV) acetylene (C2H2) complex containing
two bioinspired 6-methylpyridine-2-thiolate
ligands is reported. The synthesis can be performed either by oxidation
of a molybdenum(II) C2H2 complex or by substitution
of a coordinated PMe3 by C2H2 on
a molybdenum(IV) center. Both C2H2 complexes
were characterized by spectroscopic means as well as by single-crystal
X-ray diffraction. Furthermore, the reactivity of the coordinated
C2H2 was investigated with regard to acetylene
hydratase, one of two enzymes that accept C2H2 as a substrate. While the reaction with water resulted in the vinylation
of the pyridine-2-thiolate ligands, an intermolecular nucleophilic
attack on the coordinated C2H2 with the soft
nucleophile PMe3 was observed to give a cationic ethenyl
complex. A comparison with the tungsten analogues revealed less tightly
bound C2H2 in the molybdenum variant, which,
however, shows a higher reactivity toward nucleophiles.
Collapse
Affiliation(s)
- Madeleine A Ehweiner
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria
| | | |
Collapse
|
4
|
Liao RZ, Zhang JX, Lin Z, Siegbahn PE. Antiferromagnetically coupled [Fe8S9] cluster catalyzed acetylene reduction in a nitrogenase-like enzyme DCCPCh: Insights from QM/MM calculations. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Ehweiner MA, Peschel LM, Stix N, Ćorović MZ, Belaj F, Mösch-Zanetti NC. Bioinspired Nucleophilic Attack on a Tungsten-Bound Acetylene: Formation of Cationic Carbyne and Alkenyl Complexes. Inorg Chem 2021; 60:8414-8418. [PMID: 33852290 PMCID: PMC8220502 DOI: 10.1021/acs.inorgchem.1c00643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Inspired by the proposed
inner-sphere mechanism of the tungstoenzyme
acetylene hydratase, we have designed tungsten acetylene complexes
and investigated their reactivity. Here, we report the first intermolecular
nucleophilic attack on a tungsten-bound acetylene (C2H2) in bioinspired complexes employing 6-methylpyridine-2-thiolate
ligands. By using PMe3 as a nucleophile, we isolated cationic
carbyne and alkenyl complexes. We report the
first intermolecular nucleophilic attack on
a tungsten-bound C2H2 in two bioinspired complexes
differing only by the oxidation state of the metal center and one
ligand. By using PMe3 as a nucleophile, we isolated cationic
carbyne and alkenyl complexes.
Collapse
Affiliation(s)
- Madeleine A Ehweiner
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Lydia M Peschel
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Niklas Stix
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Miljan Z Ćorović
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, Inorganic Chemistry, University of Graz, 8010 Graz, Austria
| | | |
Collapse
|
6
|
Baesman SM, Sutton JM, Fierst JL, Akob DM, Oremland RS. Syntrophotalea acetylenivorans sp. nov., a diazotrophic, acetylenotrophic anaerobe isolated from intertidal sediments. Int J Syst Evol Microbiol 2021; 71. [PMID: 33570486 DOI: 10.1099/ijsem.0.004698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, strictly anaerobic, non-motile, rod-shaped bacterium, designated SFB93T, was isolated from the intertidal sediments of South San Francisco Bay, located near Palo Alto, CA, USA. SFB93T was capable of acetylenotrophic and diazotrophic growth, grew at 22-37 °C, pH 6.3-8.5 and in the presence of 10-45 g l-1 NaCl. Phylogenetic analyses based on 16S rRNA gene sequencing showed that SFB93T represented a member of the genus Syntrophotalea with highest 16S rRNA gene sequence similarities to Syntrophotalea acetylenica DSM 3246T (96.6 %), Syntrophotalea carbinolica DSM 2380T (96.5 %), and Syntrophotalea venetiana DSM 2394T (96.7 %). Genome sequencing revealed a genome size of 3.22 Mbp and a DNA G+C content of 53.4 %. SFB93T had low genome-wide average nucleotide identity (81-87.5 %) and <70 % digital DNA-DNA hybridization value with other members of the genus Syntrophotalea. The phylogenetic position of SFB93T within the family Syntrophotaleaceae and as a novel member of the genus Syntrophotalea was confirmed via phylogenetic reconstruction based on concatenated alignments of 92 bacterial core genes. On the basis of the results of phenotypic, genotypic and phylogenetic analyses, a novel species, Syntrophotalea acetylenivorans sp. nov., is proposed, with SFB93T (=DSM 106009T=JCM 33327T=ATCC TSD-118T) as the type strain.
Collapse
Affiliation(s)
- Shaun M Baesman
- U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California, USA
| | - John M Sutton
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Janna L Fierst
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Denise M Akob
- U.S. Geological Survey, 12201 Sunrise Valley Dr., MS 954 Reston, Virginia, USA
| | - Ronald S Oremland
- U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California, USA
| |
Collapse
|
7
|
Akob DM, Sutton JM, Fierst JL, Haase KB, Baesman S, Luther GW, Miller LG, Oremland RS. Acetylenotrophy: a hidden but ubiquitous microbial metabolism? FEMS Microbiol Ecol 2018; 94:5026170. [PMID: 29933435 PMCID: PMC7190893 DOI: 10.1093/femsec/fiy103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/29/2018] [Indexed: 11/12/2022] Open
Abstract
Acetylene (IUPAC name: ethyne) is a colorless, gaseous hydrocarbon, composed of two triple bonded carbon atoms attached to hydrogens (C2H2). When microbiologists and biogeochemists think of acetylene, they immediately think of its use as an inhibitory compound of certain microbial processes and a tracer for nitrogen fixation. However, what is less widely known is that anaerobic and aerobic microorganisms can degrade acetylene, using it as a sole carbon and energy source and providing the basis of a microbial food web. Here, we review what is known about acetylene degrading organisms and introduce the term 'acetylenotrophs' to refer to the microorganisms that carry out this metabolic pathway. In addition, we review the known environmental sources of acetylene and postulate the presence of an hidden acetylene cycle. The abundance of bacteria capable of using acetylene and other alkynes as an energy and carbon source suggests that there are energy cycles present in the environment that are driven by acetylene and alkyne production and consumption that are isolated from atmospheric exchange. Acetylenotrophs may have developed to leverage the relatively high concentrations of acetylene in the pre-Cambrian atmosphere, evolving later to survive in specialized niches where acetylene and other alkynes were produced.
Collapse
Affiliation(s)
- Denise M Akob
- U. S. Geological Survey, 12201 Sunrise Valley Dr, MS 430, Reston, VA 20192 USA
| | - John M Sutton
- Department of Biological Sciences, The University of Alabama, SEC 2328, Box 870344, Tuscaloosa, AL 35487 USA
| | - Janna L Fierst
- Department of Biological Sciences, The University of Alabama, SEC 2328, Box 870344, Tuscaloosa, AL 35487 USA
| | - Karl B Haase
- U. S. Geological Survey, 12201 Sunrise Valley Dr, MS 430, Reston, VA 20192 USA
| | - Shaun Baesman
- U. S. Geological Survey, 345 Middlefield Road, MS 480, Menlo Park, CA 94025 USA
| | - George W Luther
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, Cannon Laboratory 218, Lewes, DE 19958, USA
| | - Laurence G Miller
- U. S. Geological Survey, 345 Middlefield Road, MS 480, Menlo Park, CA 94025 USA
| | - Ronald S Oremland
- U. S. Geological Survey, 345 Middlefield Road, MS 480, Menlo Park, CA 94025 USA
| |
Collapse
|
8
|
Mao X, Oremland RS, Liu T, Gushgari S, Landers AA, Baesman SM, Alvarez-Cohen L. Acetylene Fuels TCE Reductive Dechlorination by Defined Dehalococcoides/Pelobacter Consortia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2366-2372. [PMID: 28075122 PMCID: PMC6436540 DOI: 10.1021/acs.est.6b05770] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Acetylene (C2H2) can be generated in contaminated groundwater sites as a consequence of chemical degradation of trichloroethene (TCE) by in situ minerals, and C2H2 is known to inhibit bacterial dechlorination. In this study, we show that while high C2H2 (1.3 mM) concentrations reversibly inhibit reductive dechlorination of TCE by Dehalococcoides mccartyi isolates as well as enrichment cultures containing D. mccartyi sp., low C2H2 (0.4 mM) concentrations do not inhibit growth or metabolism of D. mccartyi. Cocultures of Pelobacter SFB93, a C2H2-fermenting bacterium, with D. mccartyi strain 195 or with D. mccartyi strain BAV1 were actively sustained by providing acetylene as the electron donor and carbon source while TCE or cis-DCE served as the electron acceptor. Inhibition by acetylene of reductive dechlorination and methanogenesis in the enrichment culture ANAS was observed, and the inhibition was removed by adding Pelobacter SFB93 into the consortium. Transcriptomic analysis of D. mccartyi strain 195 showed genes encoding for reductive dehalogenases (e.g., tceA) were not affected during the C2H2-inhibition, while genes encoding for ATP synthase, biosynthesis, and Hym hydrogenase were down-regulated during C2H2 inhibition, consistent with the physiological observation of lower cell yields and reduced dechlorination rates in strain 195. These results will help facilitate the optimization of TCE-bioremediation at contaminated sites containing both TCE and C2H2.
Collapse
Affiliation(s)
- Xinwei Mao
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, California 94720-1710, United States
| | | | - Tong Liu
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Sara Gushgari
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Abigail A. Landers
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Shaun M. Baesman
- US Geological Survey, Menlo Park, California 94025, United States
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, California 94720-1710, United States
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Boll M, Einsle O, Ermler U, Kroneck PMH, Ullmann GM. Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase. J Mol Microbiol Biotechnol 2016; 26:119-37. [PMID: 26959374 DOI: 10.1159/000440805] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In biology, tungsten (W) is exclusively found in microbial enzymes bound to a bis-pyranopterin cofactor (bis-WPT). Previously known W enzymes catalyze redox oxo/hydroxyl transfer reactions by directly coordinating their substrates or products to the metal. They comprise the W-containing formate/formylmethanofuran dehydrogenases belonging to the dimethyl sulfoxide reductase (DMSOR) family and the aldehyde:ferredoxin oxidoreductase (AOR) families, which form a separate enzyme family within the Mo/W enzymes. In the last decade, initial insights into the structure and function of two unprecedented W enzymes were obtained: the acetaldehyde forming acetylene hydratase (ACH) belongs to the DMSOR and the class II benzoyl-coenzyme A (CoA) reductase (BCR) to the AOR family. The latter catalyzes the reductive dearomatization of benzoyl-CoA to a cyclic diene. Both are key enzymes in the degradation of acetylene (ACH) or aromatic compounds (BCR) in strictly anaerobic bacteria. They are unusual in either catalyzing a nonredox reaction (ACH) or a redox reaction without coordinating the substrate or product to the metal (BCR). In organic chemical synthesis, analogous reactions require totally nonphysiological conditions depending on Hg2+ (acetylene hydration) or alkali metals (benzene ring reduction). The structural insights obtained pave the way for biological or biomimetic approaches to basic reactions in organic chemistry.
Collapse
Affiliation(s)
- Matthias Boll
- Fakultx00E4;t fx00FC;r Biologie/Mikrobiologie, Institut fx00FC;r Biochemie, Albert-Ludwigs-Universitx00E4;t Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
10
|
Acetylene hydratase: a non-redox enzyme with tungsten and iron-sulfur centers at the active site. J Biol Inorg Chem 2016; 21:29-38. [PMID: 26790879 DOI: 10.1007/s00775-015-1330-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/30/2015] [Indexed: 01/05/2023]
Abstract
In living systems, tungsten is exclusively found in microbial enzymes coordinated by the pyranopterin cofactor, with additional metal coordination provided by oxygen and/or sulfur, and/or selenium atoms in diverse arrangements. Prominent examples are formate dehydrogenase, formylmethanofuran dehydrogenase, and aldehyde oxidoreductase all of which catalyze redox reactions. The bacterial enzyme acetylene hydratase (AH) stands out of its class as it catalyzes the conversion of acetylene to acetaldehyde, clearly a non-redox reaction and a reaction distinct from the reduction of acetylene to ethylene by nitrogenase. AH harbors two pyranopterins bound to W, and a [4Fe-4S] cluster. W is coordinated by four dithiolene sulfur atoms, one cysteine sulfur, and one oxygen ligand. AH activity requires a strong reductant suggesting W(IV) as the active oxidation state. Two different types of reaction pathways have been proposed. The 1.26 Å structure reveals a water molecule coordinated to W which could gain a partially positive net charge by the adjacent protonated Asp-13, enabling a direct attack of C2H2. To access the W-Asp site, a substrate channel was evolved distant from where it is found in other members of the DMSOR family. Computational studies of this second shell mechanism led to unrealistically high energy barriers, and alternative pathways were proposed where C2H2 binds directly to W. The architecture of the catalytic cavity, the specificity for C2H2 and the results from site-directed mutagenesis do not support this first shell mechanism. More investigations including structural information on the binding of C2H2 are needed to present a conclusive answer.
Collapse
|