1
|
Guan L, Voora D, Myers R, Del Carpio-Cano F, Rao AK. RUNX1 isoforms regulate RUNX1 and target genes differentially in platelets-megakaryocytes: association with clinical cardiovascular events. J Thromb Haemost 2024; 22:3581-3598. [PMID: 39181539 DOI: 10.1016/j.jtha.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Hematopoietic transcription factor RUNX1 is expressed from proximal P2 and distal P1 promoters to yield isoforms RUNX1 B and C, respectively. The roles of these isoforms in RUNX1 autoregulation and downstream gene regulation in megakaryocytes and platelets are unknown. OBJECTIVES To understand the regulation of RUNX1 and its target genes by RUNX1 isoforms. METHODS We performed studies on RUNX1 isoforms in megakaryocytic human erythroleukemia (HEL) cells and HeLa cells (lack endogenous RUNX1), in platelets from 85 healthy volunteers administered aspirin or ticagrelor, and on the association of RUNX1 target genes with acute events in 587 patients with cardiovascular disease (CVD). RESULTS In chromatin immunoprecipitation and luciferase promoter assays, RUNX1 isoforms B and C bound and regulated P1 and P2 promoters. In HeLa cells, RUNX1B decreased and RUNX1C increased P1 and P2 activities, respectively. In HEL cells, RUNX1B overexpression decreased RUNX1C and RUNX1A expression; RUNX1C increased RUNX1B and RUNX1A. RUNX1B and RUNX1C regulated target genes (MYL9, F13A1, PCTP, PDE5A, and others) differentially in HEL cells. In platelets, RUNX1B transcripts (by RNA sequencing) correlated negatively with RUNX1C and RUNX1A; RUNX1C correlated positively with RUNX1A. RUNX1B correlated positively with F13A1, PCTP, PDE5A, RAB1B, and others, and negatively with MYL9. In our previous studies, RUNX1C transcripts in whole blood were protective against acute events in CVD patients. We found that higher expression of RUNX1 targets F13A1 and RAB31 associated with acute events. CONCLUSION RUNX1 isoforms B and C autoregulate RUNX1 and regulate downstream genes in a differential manner, and this is associated with acute events in CVD.
Collapse
Affiliation(s)
- Liying Guan
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Deepak Voora
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Rachel Myers
- Duke Clinical Research Unit, Duke University School of Medicine, Durham, North Carolina, USA
| | - Fabiola Del Carpio-Cano
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - A Koneti Rao
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA; Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Ma H, Qu J, Pang Z, Luo J, Yan M, Xu W, Zhuang H, Liu L, Qu Q. Super-enhancer omics in stem cell. Mol Cancer 2024; 23:153. [PMID: 39090713 PMCID: PMC11293198 DOI: 10.1186/s12943-024-02066-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The hallmarks of stem cells, such as proliferation, self-renewal, development, differentiation, and regeneration, are critical to maintain stem cell identity which is sustained by genetic and epigenetic factors. Super-enhancers (SEs), which consist of clusters of active enhancers, play a central role in maintaining stemness hallmarks by specifically transcriptional model. The SE-navigated transcriptional complex, including SEs, non-coding RNAs, master transcriptional factors, Mediators and other co-activators, forms phase-separated condensates, which offers a toggle for directing diverse stem cell fate. With the burgeoning technologies of multiple-omics applied to examine different aspects of SE, we firstly raise the concept of "super-enhancer omics", inextricably linking to Pan-omics. In the review, we discuss the spatiotemporal organization and concepts of SEs, and describe links between SE-navigated transcriptional complex and stem cell features, such as stem cell identity, self-renewal, pluripotency, differentiation and development. We also elucidate the mechanism of stemness and oncogenic SEs modulating cancer stem cells via genomic and epigenetic alterations hijack in cancer stem cell. Additionally, we discuss the potential of targeting components of the SE complex using small molecule compounds, genome editing, and antisense oligonucleotides to treat SE-associated organ dysfunction and diseases, including cancer. This review also provides insights into the future of stem cell research through the paradigm of SEs.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
- Hunan key laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Haihui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
3
|
Guan L, Voora D, Myers R, Del Carpio-Cano F, Rao AK. RUNX1 Isoforms Regulate RUNX1 and Target-Genes Differentially in Platelets-Megakaryocytes: Association with Clinical Cardiovascular Events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599563. [PMID: 38948740 PMCID: PMC11212995 DOI: 10.1101/2024.06.18.599563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Hematopoietic transcription factor RUNX1 is expressed from proximal P2 and distal P1 promoter to yield isoforms RUNX1 B and C, respectively. The roles of these isoforms in RUNX1 autoregulation and downstream-gene regulation in megakaryocytes and platelets are unknown. Objectives To understand the regulation of RUNX1 and its target genes by RUNX1 isoforms. Methods We performed studies on RUNX1 isoforms in megakaryocytic HEL cells and HeLa cells (lack endogenous RUNX1), in platelets from 85 healthy volunteers administered aspirin or ticagrelor, and on the association of RUNX1 target genes with acute events in 587 patients with cardiovascular disease (CVD). Results In chromatin immunoprecipitation and luciferase promoter assays, RUNX1 isoforms B and C bound and regulated P1 and P2 promoters. In HeLa cells RUNX1B decreased and RUNX1C increased P1 and P2 activities, respectively. In HEL cells, RUNX1B overexpression decreased RUNX1C and RUNX1A expression; RUNX1C increased RUNX1B and RUNX1A. RUNX1B and RUNX1C regulated target genes (MYL9, F13A1, PCTP, PDE5A and others) differentially in HEL cells. In platelets RUNX1B transcripts (by RNAseq) correlated negatively with RUNX1C and RUNX1A; RUNX1C correlated positively with RUNX1A. RUNX1B correlated positively with F13A1, PCTP, PDE5A, RAB1B, and others, and negatively with MYL9. In our previous studies, RUNX1C transcripts in whole blood were protective against acute events in CVD patients. We found that higher expression of RUNX1 targets F13A1 and RAB31 associated with acute events. Conclusions RUNX1 isoforms B and C autoregulate RUNX1 and regulate downstream genes in a differential manner and this associates with acute events in CVD.
Collapse
Affiliation(s)
- Liying Guan
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Deepak Voora
- Department of Medicine, Duke University, Durham, NC
| | - Rachel Myers
- Duke Clinical Research Unit, Duke University School of Medicine, Durham, NC
| | - Fabiola Del Carpio-Cano
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - A. Koneti Rao
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
4
|
Eriksson A, Engvall M, Mathot L, Österroos A, Rippin M, Cavelier L, Ladenvall C, Baliakas P. Somatic Exonic Deletions in RUNX1 Constitutes a Novel Recurrent Genomic Abnormality in Acute Myeloid Leukemia. Clin Cancer Res 2023; 29:2826-2834. [PMID: 37022349 DOI: 10.1158/1078-0432.ccr-23-0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/07/2023]
Abstract
PURPOSE In acute myeloid leukemia (AML), somatic mutations (commonly missense, nonsense, and frameshift indels) in RUNX1 are associated with a dismal clinical outcome. Inherited RUNX1 mutations cause familial platelet disorder. As approximately 5%-10% of germline RUNX1 mutations are large exonic deletions, we hypothesized that such exonic RUNX1 aberrations may also be acquired during the development of AML. EXPERIMENTAL DESIGN Sixty patients with well-characterized AML were analyzed with multiplex ligation-dependent probe amplification (n = 60), microarray (n = 11), and/or whole-genome sequencing (n = 8). RESULTS In total, 25 (42% of the cohort) RUNX1-aberrant patients (defined by the presence of classical mutations and/or exonic deletions) were identified. Sixteen patients (27%) carried only exonic deletions, 5 (8%) carried classical mutations, and 4 (7%) carried both exonic deletions and mutations. No significant difference was observed between patients with classical RUNX1 mutations and RUNX1 exonic deletions in median overall survival (OS, 53.1 vs. 38.8 months, respectively, P = 0.63). When applying the European Leukemia Net (ELN) classification including the RUNX1-aberrant group, 20% of the patients initially stratified as intermediate-risk (5% of the whole cohort) were reassigned to the high-risk group, which improved the performance of ELN classification regarding OS between intermediate- and high-risk groups (18.9 vs. 9.6 months, P = 0.09). CONCLUSIONS Somatic RUNX1 exonic deletions constitute a novel recurrent aberration in AML. Our findings have important clinical implications regarding AML classification, risk stratification, and treatment decision. Moreover, they argue in favor of further investigating such genomic aberrations not only in RUNX1 but also in other genes implicated in cancer biology and management. See related commentary by Chakraborty and Stengel, p. 2742.
Collapse
Affiliation(s)
- Anna Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Marie Engvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Albin Österroos
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Rippin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Claes Ladenvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
5
|
Effective therapy for AML with RUNX1 mutation by cotreatment with inhibitors of protein translation and BCL2. Blood 2022; 139:907-921. [PMID: 34601571 PMCID: PMC8832475 DOI: 10.1182/blood.2021013156] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/19/2021] [Indexed: 11/20/2022] Open
Abstract
The majority of RUNX1 mutations in acute myeloid leukemia (AML) are missense or deletion-truncation and behave as loss-of-function mutations. Following standard therapy, AML patients expressing mtRUNX1 exhibit inferior clinical outcome than those without mutant RUNX1. Studies presented here demonstrate that as compared with AML cells lacking mtRUNX1, their isogenic counterparts harboring mtRUNX1 display impaired ribosomal biogenesis and differentiation, as well as exhibit reduced levels of wild-type RUNX1, PU.1, and c-Myc. Compared with AML cells with only wild-type RUNX1, AML cells expressing mtRUNX1 were also more sensitive to the protein translation inhibitor homoharringtonine (omacetaxine) and BCL2 inhibitor venetoclax. Homoharringtonine treatment repressed enhancers and their BRD4 occupancy and was associated with reduced levels of c-Myc, c-Myb, MCL1, and Bcl-xL. Consistent with this, cotreatment with omacetaxine and venetoclax or BET inhibitor induced synergistic in vitro lethality in AML expressing mtRUNX1. Compared with each agent alone, cotreatment with omacetaxine and venetoclax or BET inhibitor also displayed improved in vivo anti-AML efficacy, associated with improved survival of immune-depleted mice engrafted with AML cells harboring mtRUNX1. These findings highlight superior efficacy of omacetaxine-based combination therapies for AML harboring mtRUNX1.
Collapse
|
6
|
Gonzales F, Barthélémy A, Peyrouze P, Fenwarth L, Preudhomme C, Duployez N, Cheok MH. Targeting RUNX1 in acute myeloid leukemia: preclinical innovations and therapeutic implications. Expert Opin Ther Targets 2021; 25:299-309. [PMID: 33906574 DOI: 10.1080/14728222.2021.1915991] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: RUNX1 is an essential transcription factor for normal and malignant hematopoiesis. RUNX1 forms a heterodimeric complex with CBFB. Germline mutations and somatic alterations (i.e. translocations, mutations and abnormal expression) are frequently associated with acute myeloid leukemia (AML) with RUNX1 mutations conferring unfavorable prognosis. Therefore, RUNX1 constitutes a potential innovative and interesting therapeutic target. In this review, we discuss recent therapeutic advances of RUNX1 targeting in AML.Areas covered: Firstly, we cover the clinical basis for RUNX1 targeting. We have subdivided recent therapeutic approaches either by common biochemical pathways or by similar pharmacological targets. Genome editing of RUNX1 induces anti-leukemic effects; however, off-target events prohibit clinical use. Several molecules inhibit the interaction between RUNX1/CBFB and control AML development and progression. BET protein antagonists target RUNX1 (i.e. specific BET inhibitors, BRD4 shRNRA, proteolysis targeting chimeras (PROTAC) or expression-mimickers). All these molecules improve survival in mutant RUNX1 AML preclinical models.Expert opinion: Some of these novel molecules have shown encouraging anti-leukemic potency at the preclinical stage. A better understanding of RUNX1 function in AML development and progression and its key downstream pathways, may result in more precise and more efficient RUNX1 targeting therapies.
Collapse
Affiliation(s)
- Fanny Gonzales
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Pediatric Hematology Department, University Hospital of Lille, Lille, France
| | - Adeline Barthélémy
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France
| | - Pauline Peyrouze
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France
| | - Laurène Fenwarth
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Laboratory of Hematology, CHU Lille, Lille, France
| | - Claude Preudhomme
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Laboratory of Hematology, CHU Lille, Lille, France
| | - Nicolas Duployez
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Laboratory of Hematology, CHU Lille, Lille, France
| | - Meyling H Cheok
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France
| |
Collapse
|
7
|
He W, Zhao C, Hu H. Prognostic effect of RUNX1 mutations in myelodysplastic syndromes: a meta-analysis. ACTA ACUST UNITED AC 2020; 25:494-501. [PMID: 33317419 DOI: 10.1080/16078454.2020.1858598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES RUNX1 mutations have been widely found in patients with myelodysplastic syndrome (MDS). Majority of reports revealed that RUNX1 mutations are associated with a poor prognosis. However, discrepancies still remain. The results of univariate analysis were not confirmed in multivariate analysis in some cases. Therefore, we performed a meta-analysis to assess the prognostic effect of RUNX1 mutations in MDS. METHODS We extracted data from qualified studies that were searched from PubMed, Embase and the Cochrane Library. Hazard ratios (HRs) and their 95% confidence intervals (CIs) for the overall survival (OS) and leukemia free survival (LFS) were pooled from the multivariate Cox proportional hazard models. RESULTS Sixteen studies containing 5422 patients were included in this meta-analysis. There were 617 patients with mutated RUNX1 and 4805 patients with wide type RUNX1. The total HR for OS was 1.43 (95% CI = 1.21-1.70, P < 0.0001) and the counterpart of LFS was 1.88 (95% CI = 1.42-2.51, P < 0.0001). DISCUSSION AND CONCLUSION These results suggest that the RUNX1 mutations are associated with unfavorable outcomes and shorter survival in patients with MDS. Furthermore, poor prognosis of patients might be alleviated by stem cell transplantation. Patients bearing these mutations should be prioritized for aggressive therapy.
Collapse
Affiliation(s)
- Wei He
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China
| | - Caifang Zhao
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China
| | - Huixian Hu
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China
| |
Collapse
|
8
|
Garg SK, Welsh EA, Fang B, Hernandez YI, Rose T, Gray J, Koomen JM, Berglund A, Mulé JJ, Markowitz J. Multi-Omics and Informatics Analysis of FFPE Tissues Derived from Melanoma Patients with Long/Short Responses to Anti-PD1 Therapy Reveals Pathways of Response. Cancers (Basel) 2020; 12:cancers12123515. [PMID: 33255891 PMCID: PMC7768436 DOI: 10.3390/cancers12123515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/21/2020] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Immune based therapies have benefited many melanoma patients, but many patients still do not respond. This study analyzes biospecimens obtained from patients undergoing a type of immune based therapy called anti-PD-1 to understand mechanisms of response and resistance to this treatment. The operational definition of good response utilized in this investigation permitted us to examine the biochemical pathways that are facilitating anti-PD-1 responses independent of prior therapies received by patients. Currently, there are no clinically available tests to reliably test for the outcome of patients treated with anti-PD-1 therapy. The purpose of this study was to facilitate the development of prospective biomarker-directed trials to guide therapy, as even though the side effect profile is favorable for anti-PD-1 therapy, some patients do not respond to therapy with significant toxicity. Each patient may require testing for the pathways upregulated in the tumor to predict optimal benefit to anti-PD-1 treatment. Abstract Anti-PD-1 based immune therapies are thought to be dependent on antigen processing and presentation mechanisms. To characterize the immune-dependent mechanisms that predispose stage III/IV melanoma patients to respond to anti-PD-1 therapies, we performed a multi-omics study consisting of expression proteomics and targeted immune-oncology-based mRNA sequencing. Formalin-fixed paraffin-embedded tissue samples were obtained from stage III/IV patients with melanoma prior to anti-PD-1 therapy. The patients were first stratified into poor and good responders based on whether their tumors had or had not progressed while on anti-PD-1 therapy for 1 year. We identified 263 protein/gene candidates that displayed differential expression, of which 223 were identified via proteomics and 40 via targeted-mRNA analyses. The downstream analyses of expression profiles using MetaCore software demonstrated an enrichment of immune system pathways involved in antigen processing/presentation and cytokine production/signaling. Pathway analyses showed interferon (IFN)-γ-mediated signaling via NF-κB and JAK/STAT pathways to affect immune processes in a cell-specific manner and to interact with the inducible nitric oxide synthase. We review these findings within the context of available literature on the efficacy of anti-PD-1 therapy. The comparison of good and poor responders, using efficacy of PD-1-based therapy at 1 year, elucidated the role of antigen presentation in mediating response or resistance to anti-PD-1 blockade.
Collapse
Affiliation(s)
- Saurabh K. Garg
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (S.K.G.); (Y.I.H.)
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Bin Fang
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.F.); (J.M.K.)
| | - Yuliana I. Hernandez
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (S.K.G.); (Y.I.H.)
| | - Trevor Rose
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
| | - Jhanelle Gray
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M. Koomen
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.F.); (J.M.K.)
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
| | - Anders Berglund
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - James J. Mulé
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Joseph Markowitz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (S.K.G.); (Y.I.H.)
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-745-8581
| |
Collapse
|
9
|
Liu S, Xie F, Gan L, Peng T, Xu X, Guo S, Fu W, Wang Y, Ouyang Y, Yang J, Wang X, Zheng Y, Zhang J, Wang H. Integration of transcriptome and cistrome analysis identifies RUNX1-target genes involved in pancreatic cancer proliferation. Genomics 2020; 112:5343-5355. [PMID: 33189780 DOI: 10.1016/j.ygeno.2020.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022]
Abstract
The extremely high proliferation rate of tumor cells contributes to pancreatic cancer (PC) progression. Runt-related transcription factor 1(RUNX1), a key factor in hematopoiesis that was correlated with tumor progression. However, the role of RUNX1 in PC proliferation was still unclear. We found that RUNX1 was significantly upregulated in PC tissues and its expression was negatively associated with prognosis of PC patients in a multicenter analysis according to immunohistochemical (IHC). RUNX1 downregulation in PC resulted in a significantly reduced cell proliferation rate, which was consistent with in vivo subcutaneous tumor formation assay results. RNA-seq and ChIP-seq results revealed that a portion of target genes, including HAP1, GPRC5B, PTPN21, VHL and EN2, were regulated by RUNX1, a finding successfully validated by ChIP-qPCR, qRT-PCR and Western blot. Subsequently, IHC and proliferation assays showed these target genes to be dysregulated in PC, affecting tumor growth. Our data suggest that RUNX1 plays an oncogenic role in tumor proliferation and is a potential prognostic biomarker and therapeutic target for PC.
Collapse
Affiliation(s)
- Songsong Liu
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Fuming Xie
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Lang Gan
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Tao Peng
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xuejun Xu
- Department of Hepatobiliary Surgery, General Hospital of Xinjiang Military Region of PLA, Xinjiang, PR China
| | - Shixiang Guo
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Wen Fu
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Yunchao Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yongsheng Ouyang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Yao Zheng
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China.
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China; Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China.
| |
Collapse
|
10
|
Laufer BI, Hwang H, Jianu JM, Mordaunt CE, Korf IF, Hertz-Picciotto I, LaSalle JM. Low-pass whole genome bisulfite sequencing of neonatal dried blood spots identifies a role for RUNX1 in Down syndrome DNA methylation profiles. Hum Mol Genet 2020; 29:3465-3476. [PMID: 33001180 PMCID: PMC7788293 DOI: 10.1093/hmg/ddaa218] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Neonatal dried blood spots (NDBS) are a widely banked sample source that enables retrospective investigation into early life molecular events. Here, we performed low-pass whole genome bisulfite sequencing (WGBS) of 86 NDBS DNA to examine early life Down syndrome (DS) DNA methylation profiles. DS represents an example of genetics shaping epigenetics, as multiple array-based studies have demonstrated that trisomy 21 is characterized by genome-wide alterations to DNA methylation. By assaying over 24 million CpG sites, thousands of genome-wide significant (q < 0.05) differentially methylated regions (DMRs) that distinguished DS from typical development and idiopathic developmental delay were identified. Machine learning feature selection refined these DMRs to 22 loci. The DS DMRs mapped to genes involved in neurodevelopment, metabolism, and transcriptional regulation. Based on comparisons with previous DS methylation studies and reference epigenomes, the hypermethylated DS DMRs were significantly (q < 0.05) enriched across tissues while the hypomethylated DS DMRs were significantly (q < 0.05) enriched for blood-specific chromatin states. A ~28 kb block of hypermethylation was observed on chromosome 21 in the RUNX1 locus, which encodes a hematopoietic transcription factor whose binding motif was the most significantly enriched (q < 0.05) overall and specifically within the hypomethylated DMRs. Finally, we also identified DMRs that distinguished DS NDBS based on the presence or absence of congenital heart disease (CHD). Together, these results not only demonstrate the utility of low-pass WGBS on NDBS samples for epigenome-wide association studies, but also provide new insights into the early life mechanisms of epigenomic dysregulation resulting from trisomy 21.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.,Genome Center, University of California, Davis, CA 95616, USA.,MIND Institute, University of California, Davis, CA 95616, USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.,Genome Center, University of California, Davis, CA 95616, USA.,MIND Institute, University of California, Davis, CA 95616, USA
| | - Julia M Jianu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.,Genome Center, University of California, Davis, CA 95616, USA.,MIND Institute, University of California, Davis, CA 95616, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.,Genome Center, University of California, Davis, CA 95616, USA.,MIND Institute, University of California, Davis, CA 95616, USA
| | - Ian F Korf
- Genome Center, University of California, Davis, CA 95616, USA.,Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Irva Hertz-Picciotto
- MIND Institute, University of California, Davis, CA 95616, USA.,Department of Public Health Sciences, School of Medicine, University of California, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.,Genome Center, University of California, Davis, CA 95616, USA.,MIND Institute, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Soukup AA, Bresnick EH. GATA2 +9.5 enhancer: from principles of hematopoiesis to genetic diagnosis in precision medicine. Curr Opin Hematol 2020; 27:163-171. [PMID: 32205587 PMCID: PMC7331797 DOI: 10.1097/moh.0000000000000576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW By establishing mechanisms that deliver oxygen to sustain cells and tissues, fight life-threatening pathogens and harness the immune system to eradicate cancer cells, hematopoietic stem and progenitor cells (HSPCs) are vital in health and disease. The cell biological framework for HSPC generation has been rigorously developed, yet recent single-cell transcriptomic analyses have unveiled permutations of the hematopoietic hierarchy that differ considerably from the traditional roadmap. Deploying mutants that disrupt specific steps in hematopoiesis constitutes a powerful strategy for deconvoluting the complex cell biology. It is striking that a single transcription factor, GATA2, is so crucial for HSPC generation and function, and therefore it is instructive to consider mechanisms governing GATA2 expression and activity. The present review focuses on an essential GATA2 enhancer (+9.5) and how +9.5 mutants inform basic and clinical/translational science. RECENT FINDINGS +9.5 is essential for HSPC generation and function during development and hematopoietic regeneration. Human +9.5 mutations cause immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. Qualitatively and quantitatively distinct contributions of +9.5 cis-regulatory elements confer context-dependent enhancer activity. The discovery of +9.5 and its mutant alleles spawned fundamental insights into hematopoiesis, and given its role to suppress blood disease emergence, clinical centers test for mutations in this sequence to diagnose the cause of enigmatic cytopenias. SUMMARY Multidisciplinary approaches to discover and understand cis-regulatory elements governing expression of key regulators of hematopoiesis unveil biological and mechanistic insights that provide the logic for innovating clinical applications.
Collapse
|
12
|
Chuang LSH, Osato M, Ito Y. The RUNX1 Enhancer Element eR1: A Versatile Marker for Adult Stem Cells. Mol Cells 2020; 43:121-125. [PMID: 31926544 PMCID: PMC7057835 DOI: 10.14348/molcells.2019.0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/03/2019] [Indexed: 11/27/2022] Open
Abstract
The identification of adult stem cells is challenging because of the heterogeneity and plasticity of stem cells in different organs. Within the same tissue, stem cells may be highly proliferative, or maintained in a quiescent state and only to be activated after tissue damage. Although various stem cell markers have been successfully identified, there is no universal stem cell marker, which is exclusively expressed in all stem cells. Here, we discuss the roles of master developmental regulator RUNX1 in stem cells and the development of a 270 base pair fragment of the Runx1 enhancer (eR1) for use as stem cell marker. Using eR1 to identify stem cells offers a distinct advantage over gene promoters, which might not be expressed exclusively in stem cells. Moreover, RUNX1 has been strongly implicated in various cancer types, such as leukemia, breast, esophageal, prostate, oral, skin, and ovarian cancers?it has been suggested that RUNX1 dysfunction promotes stem cell dysfunction and proliferation. As tissue stem cells are potential candidates for cancer cells-of-origin and cancer stem cells, we will also discuss the use of eR1 to target oncogenic gene manipulations in stem cells and to track subsequent neoplastic changes.
Collapse
Affiliation(s)
- Linda Shyue Huey Chuang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
13
|
RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood 2019; 134:59-73. [PMID: 31023702 DOI: 10.1182/blood.2018893982] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
RUNX1 transcription factor regulates normal and malignant hematopoiesis. Somatic or germline mutant RUNX1 (mtRUNX1) is associated with poorer outcome in acute myeloid leukemia (AML). Knockdown or inhibition of RUNX1 induced more apoptosis of AML expressing mtRUNX1 versus wild-type RUNX1 and improved survival of mice engrafted with mtRUNX1-expressing AML. CRISPR/Cas9-mediated editing-out of RUNX1 enhancer (eR1) within its intragenic super-enhancer, or BET protein BRD4 depletion by short hairpin RNA, repressed RUNX1, inhibited cell growth, and induced cell lethality in AML cells expressing mtRUNX1. Moreover, treatment with BET protein inhibitor or degrader (BET-proteolysis targeting chimera) repressed RUNX1 and its targets, inducing apoptosis and improving survival of mice engrafted with AML expressing mtRUNX1. Library of Integrated Network-based Cellular Signatures 1000-connectivity mapping data sets queried with messenger RNA signature of RUNX1 knockdown identified novel expression-mimickers (EMs), which repressed RUNX1 and exerted in vitro and in vivo efficacy against AML cells expressing mtRUNX1. In addition, the EMs cinobufagin, anisomycin, and narciclasine induced more lethality in hematopoietic progenitor cells (HPCs) expressing germline mtRUNX1 from patients with AML compared with HPCs from patients with familial platelet disorder (FPD), or normal untransformed HPCs. These findings highlight novel therapeutic agents for AML expressing somatic or germline mtRUNX1.
Collapse
|