1
|
Sharma G, Tran TM, Bansal I, Beg MS, Bhardwaj R, Bassi J, Tan Y, Jaiswal AK, Tso C, Jain A, Singh J, Chattopadhyay P, Singh A, Chopra A, Bakhshi S, Casero D, Rao DS, Palanichamy JK. RNA binding protein IGF2BP1 synergizes with ETV6-RUNX1 to drive oncogenic signaling in B-cell Acute Lymphoblastic Leukemia. J Exp Clin Cancer Res 2023; 42:231. [PMID: 37670323 PMCID: PMC10478443 DOI: 10.1186/s13046-023-02810-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/27/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most common pediatric hematological malignancy, with ETV6::RUNX1 being the most prevalent translocation whose exact pathogenesis remains unclear. IGF2BP1 (Insulin-like Growth Factor 2 Binding Protein 1) is an oncofetal RNA binding protein seen to be specifically overexpressed in ETV6::RUNX1 positive B-ALL. In this study, we have studied the mechanistic role of IGF2BP1 in leukemogenesis and its synergism with the ETV6::RUNX1 fusion protein. METHODS Gene expression was analyzed from patient bone marrow RNA using Real Time RT-qPCR. Knockout cell lines were created using CRISPR-Cas9 based lentiviral vectors. RNA-Seq and RNA Immunoprecipitation sequencing (RIP-Seq) after IGF2BP1 pulldown were performed using the Illumina platform. Mouse experiments were done by retroviral overexpression of donor HSCs followed by lethal irradiation of recipients using a bone marrow transplant model. RESULTS We observed specific overexpression of IGF2BP1 in ETV6::RUNX1 positive patients in an Indian cohort of pediatric ALL (n=167) with a positive correlation with prednisolone resistance. IGF2BP1 expression was essential for tumor cell survival in multiple ETV6::RUNX1 positive B-ALL cell lines. Integrated analysis of transcriptome sequencing after IGF2BP1 knockout and RIP-Seq after IGF2BP1 pulldown in Reh cell line revealed that IGF2BP1 targets encompass multiple pro-oncogenic signalling pathways including TNFα/NFκB and PI3K-Akt pathways. These pathways were also dysregulated in primary ETV6::RUNX1 positive B-ALL patient samples from our center as well as in public B-ALL patient datasets. IGF2BP1 showed binding and stabilization of the ETV6::RUNX1 fusion transcript itself. This positive feedback loop led to constitutive dysregulation of several oncogenic pathways. Enforced co-expression of ETV6::RUNX1 and IGF2BP1 in mouse bone marrow resulted in marrow hypercellularity which was characterized by multi-lineage progenitor expansion and strong Ki67 positivity. This pre-leukemic phenotype confirmed their synergism in-vivo. Clonal expansion of cells overexpressing both ETV6::RUNX1 and IGF2BP1 was clearly observed. These mice also developed splenomegaly indicating extramedullary hematopoiesis. CONCLUSION Our data suggest a combined impact of the ETV6::RUNX1 fusion protein and RNA binding protein, IGF2BP1 in activating multiple oncogenic pathways in B-ALL which makes IGF2BP1 and these pathways as attractive therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Tiffany M Tran
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ishu Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Mohammad Sabique Beg
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Ruchi Bhardwaj
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Jaspal Bassi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Yuande Tan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Amit Kumar Jaiswal
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Christine Tso
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ayushi Jain
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Jay Singh
- Department of Laboratory Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Parthaprasad Chattopadhyay
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Anita Chopra
- Department of Laboratory Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - David Casero
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jayanth Kumar Palanichamy
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India.
| |
Collapse
|
2
|
DNA methylation at birth in monozygotic twins discordant for pediatric acute lymphoblastic leukemia. Nat Commun 2022; 13:6077. [PMID: 36241624 PMCID: PMC9568651 DOI: 10.1038/s41467-022-33677-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/28/2022] [Indexed: 01/11/2023] Open
Abstract
Aberrant DNA methylation constitutes a key feature of pediatric acute lymphoblastic leukemia at diagnosis, however its role as a predisposing or early contributor to leukemia development remains unknown. Here, we evaluate DNA methylation at birth in 41 leukemia-discordant monozygotic twin pairs using the Illumina EPIC array on archived neonatal blood spots to identify epigenetic variation associated with development of pediatric acute lymphoblastic leukemia, independent of genetic influence. Through conditional logistic regression we identify 240 significant probes and 10 regions associated with the discordant onset of leukemia. We identify a significant negative coefficient bias, indicating DNA hypomethylation in cases, across the array and enhanced in open sea, shelf/shore, and gene body regions compared to promoter and CpG island regions. Here, we show an association between global DNA hypomethylation and future development of pediatric acute lymphoblastic leukemia across disease-discordant genetically identical twins, implying DNA hypomethylation may contribute more generally to leukemia risk.
Collapse
|
3
|
Bang B, Eisfeldt J, Barbany G, Harila-Saari A, Heyman M, Zachariadis V, Taylan F, Nordgren A. A somatic UBA2 variant preceded ETV6-RUNX1 in the concordant BCP-ALL of monozygotic twins. Blood Adv 2022; 6:2275-2289. [PMID: 34982829 PMCID: PMC9006272 DOI: 10.1182/bloodadvances.2021005703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Genetic analysis of leukemic clones in monozygotic twins with concordant acute lymphoblastic leukemia (ALL) has proved a unique opportunity to gain insight into the molecular phylogenetics of leukemogenesis. Using whole-genome sequencing, we characterized constitutional and somatic single nucleotide variants/insertion-deletions (indels) and structural variants in a monozygotic twin pair with concordant ETV6-RUNX1+ B-cell precursor ALL (BCP-ALL). In addition, digital PCR (dPCR) was applied to evaluate the presence of and quantify selected somatic variants at birth, diagnosis, and remission. A shared somatic complex rearrangement involving chromosomes 11, 12, and 21 with identical fusion sequences in leukemias of both twins offered direct proof of a common clonal origin. The ETV6-RUNX1 fusion detected at diagnosis was found to originate from this complex rearrangement. A shared somatic frameshift deletion in UBA2 was also identified in diagnostic samples. In addition, each leukemia independently acquired analogous deletions of 3 genes recurrently targeted in BCP-ALLs (ETV6, ATF7IP, and RAG1/RAG2), providing evidence of a convergent clonal evolution only explained by a strong concurrent selective pressure. Quantification of the UBA2 deletion by dPCR surprisingly indicated it persisted in remission. This, for the first time to our knowledge, provided evidence of a UBA2 variant preceding the well-established initiating event ETV6-RUNX1. Further, we suggest the UBA2 deletion exerted a leukemia predisposing effect and that its essential role in Small Ubiquitin-like Modifier (SUMO) attachment (SUMOylation), regulating nearly all physiological and pathological cellular processes such as DNA-repair by nonhomologous end joining, may hold a mechanistic explanation for the predisposition.
Collapse
Affiliation(s)
- Benedicte Bang
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Arja Harila-Saari
- Department of Women’s and Children’s Health, Uppsala University Hospital, Uppsala, Sweden
| | - Mats Heyman
- Department of Women’s and Children’s Health, Karolinska University Hospital Solna, Stockholm, Sweden; and
| | - Vasilios Zachariadis
- Department of Oncology-Pathology, Cancer Centre Karolinska (CCK), Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Iacobucci I, Kimura S, Mullighan CG. Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:3792. [PMID: 34501239 PMCID: PMC8432032 DOI: 10.3390/jcm10173792] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most successful paradigm of how risk-adapted therapy and detailed understanding of the genetic alterations driving leukemogenesis and therapeutic response may dramatically improve treatment outcomes, with cure rates now exceeding 90% in children. However, ALL still represents a leading cause of cancer-related death in the young, and the outcome for older adolescents and young adults with ALL remains poor. In the past decade, next generation sequencing has enabled critical advances in our understanding of leukemogenesis. These include the identification of risk-associated ALL subtypes (e.g., those with rearrangements of MEF2D, DUX4, NUTM1, ZNF384 and BCL11B; the PAX5 P80R and IKZF1 N159Y mutations; and genomic phenocopies such as Ph-like ALL) and the genomic basis of disease evolution. These advances have been complemented by the development of novel therapeutic approaches, including those that are of mutation-specific, such as tyrosine kinase inhibitors, and those that are mutation-agnostic, including antibody and cellular immunotherapies, and protein degradation strategies such as proteolysis-targeting chimeras. Herein, we review the genetic taxonomy of ALL with a focus on clinical implications and the implementation of genomic diagnostic approaches.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
- Comprehensive Cancer Center, Hematological Malignancies Program, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
5
|
Rönkkö R, Hirvonen E, Malila N, Kilpivaara O, Wartiovaara-Kautto U, Pitkäniemi J. Familial aggregation of early-onset haematological malignancies. Br J Haematol 2021; 193:1134-1141. [PMID: 34002362 DOI: 10.1111/bjh.17477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/22/2021] [Indexed: 02/04/2023]
Abstract
Population-based studies on familial aggregation of haematological malignancies (HM) have rarely focused specifically on early-onset HMs. We estimated standardized incidence ratios (SIR) and cumulative risks of relatives with Hodgkin lymphoma (HL), non-Hodgkin lymphomas (NHL), acute lymphoblastic leukaemia/lymphoma (ALL/LBL) and acute myeloid leukaemia (AML) when index persons and relatives were diagnosed with early-onset HM. A total of 8791 patients aged ≤40 years and diagnosed with primary HM in Finland from 1970 to 2012 were identified from the Finnish Cancer Registry and their 75 774 family members were retrieved from the population registry. SIRs for concordant HMs were elevated among first-degree relatives in all of the most common HMs of children and adolescents and young adults (AYA). The risk was highest among siblings with HL (SIR 9·09, 95% confidence interval 5·55-14·04) and AML (8·29, 1·00-29·96). HL also had the highest cumulative risk for siblings at ≤40 years of age (0·92% vs. 0·11% in the population). In conclusion, significantly elevated SIRs indicate a role of shared aetiological factors in some families, which should be noted in the clinical setting when caring for patients with early-onset HMs.
Collapse
Affiliation(s)
- Rosa Rönkkö
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland.,Department of Internal Medicine, Helsinki University Hospital, Helsinki, Finland.,Department of Hematology, University of Helsinki, Helsinki, Finland
| | - Elli Hirvonen
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland
| | - Nea Malila
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland
| | - Outi Kilpivaara
- Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,HUSLAB Laboratory of Genetics, HUS Diagnostic Center (Helsinki University Hospital), Helsinki, Finland
| | - Ulla Wartiovaara-Kautto
- Department of Hematology, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Janne Pitkäniemi
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland.,Faculty of Social Sciences, Tampere University, Tampere, Finland.,Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Zheng YZ, Pan LL, Li J, Chen ZS, Hua XL, Le SH, Zheng H, Chen C, Hu JD. [Clinical features and prognosis of ETV6-RUNX1-positive childhood B-precursor acute lymphocyte leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:45-51. [PMID: 33677868 PMCID: PMC7957247 DOI: 10.3760/cma.j.issn.0253-2727.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the clinical features and prognosis of ETV6-RUNX1-positive childhood B-precursor acute lymphocyte leukemia (B-ALL) . Methods: The clinical data of 927 newly diagnosed children with B-ALL admitted to the Fujian Medical University Union Hospital from April 2011 to May 2020 were retrospectively analyzed. According to the results of ETV6-RUNX1 gene, the patients were divided into ETV6-RUNX1(+) and ETV6-RUNX1(-) groups. The clinical features and prognosis between the two groups were compared. Among the 182 children with ETV6-RUNX1(+), 144 patients received the Chinese Childhood Leukemia Collaborative Group (CCLG) -ALL 2008 protocol (CCLG-ALL 2008 group) and 38 received the China Childhood Cancer Collaborative Group (CCCG) -ALL2015 protocol (CCCG-ALL 2015 group) . The efficacy, serious adverse effects (SAE) incidence, and treatment-related mortality (TRM) of the two groups were also compared. Results: Of the 927 B-ALL patients, 189 (20.4% ) were ETV6-RUNX1(+). The proportion of patients with risk factors (age ≥10 years or <1 year, white blood cell count ≥50×10(9)/L) in the ETV6-RUNX1(+) group was significantly lower than that in the ETV6-RUNX1(-) group (P=0.000, 0.001, respectively) , while the proportion of patients with good early response (good response to prednisone, d15 or d19 MRD <1% , and d33 or d46 MRD<0.01% in induction chemotherapy) in the ETV6-RUNX1(+) group was significantly higher than that in the ETV6-RUNX1(-) group (P=0.028, 0.004, respectively) . The 5-year EFS and OS of the ETV6-RUNX1(+) group were significantly higher than those of the ETV6-RUNX1(-) group (EFS: 89.8% vs 83.2% , P=0.003; OS: 90.2% vs 86.3% , P=0.030) . The incidence of infection-related SAE and TRM was significantly higher than that of CCCG-ALL 2015 group. A statistical difference was observed between the incidence of infection-related SAE of the two groups (27.1% vs 5.3% , P=0.004) , but no difference in TRM (4.9% vs 0, P=0.348) . Conclusion: ETV6-RUNX1(+)B-ALL children have fewer risk factors at diagnosis, better early response, lower recurrence rate, and good prognosis than that of ETV6-RUNX1(-)B-ALL children. Reducing the intensity of chemotherapy appropriately can lower the infection-related SAE and TRM and improve the long-term survival in this subtype.
Collapse
Affiliation(s)
- Y Z Zheng
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - L L Pan
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - J Li
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Z S Chen
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - X L Hua
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - S H Le
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - H Zheng
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - C Chen
- Department of Pediatric Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - J D Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
7
|
Grobbelaar C, Ford AM. The Role of MicroRNA in Paediatric Acute Lymphoblastic Leukaemia: Challenges for Diagnosis and Therapy. JOURNAL OF ONCOLOGY 2019; 2019:8941471. [PMID: 31737072 PMCID: PMC6815594 DOI: 10.1155/2019/8941471] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/23/2019] [Accepted: 09/21/2019] [Indexed: 01/20/2023]
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common cancer of childhood. Although the overall survival of children with ALL is now more than 90%, leukaemia remains one of the leading causes of death from disease. In developed countries, the overall survival of patients with ALL has increased to more than 80%; however, those children cured from ALL still show a significant risk of short- and long-term complications as a consequence of their treatment. Accordingly, there is a need not only to develop new methods of diagnosis and prognosis but also to provide patients with less toxic therapies. MicroRNAs (miRNAs) are small ribonucleic acids (RNA), usually without coding potential, that regulate gene expression by directing their target messenger RNAs (mRNAs) for degradation or translational suppression. In paediatric ALL, several miRNAs have been observed to be overexpressed or underexpressed in patient cohorts compared to healthy individuals, while numerous studies have identified specific miRNAs that can be used as biomarkers to diagnose ALL, classify it into subgroups, and predict prognosis. Likewise, a variety of miRNAs identify as candidate targets for treatment, although there are numerous obstacles to overcome before their clinical use in patients. Here, we summarise the roles played by different miRNAs in childhood leukaemia, focussing primarily on their use as diagnostic tools and potential therapeutic targets, as well as a role in predicting treatment outcome. Finally, we discuss the potential roles of miRNA in immunotherapy and the novel contributions made by gut miRNAs to regulation of the host microbiome.
Collapse
Affiliation(s)
- Carle Grobbelaar
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Anthony M. Ford
- Centre for Evolution and Cancer, Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
8
|
Cheah JJC, Brown AL, Schreiber AW, Feng J, Babic M, Moore S, Young CC, Fine M, Phillips K, Guandalini M, Wilson P, Poplawski N, Hahn CN, Scott HS. A novel germline SAMD9L mutation in a family with ataxia-pancytopenia syndrome and pediatric acute lymphoblastic leukemia. Haematologica 2019; 104:e318-e321. [PMID: 30923096 DOI: 10.3324/haematol.2018.207316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jesse J C Cheah
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA.,School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA
| | - Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA.,School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA.,School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA
| | - Andreas W Schreiber
- School of Biological Sciences, University of Adelaide, Adelaide, SA.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA
| | - Jinghua Feng
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA
| | - Milena Babic
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA
| | - Sarah Moore
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA
| | - Chun-Chun Young
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA
| | - Miriam Fine
- Adult Genetics Unit, Royal Adelaide Hospital, University of Adelaide, Adelaide, SA
| | - Kerry Phillips
- Adult Genetics Unit, Royal Adelaide Hospital, University of Adelaide, Adelaide, SA
| | - Michael Guandalini
- Children's Health Queensland Hospital and Health Service, Lady Cilento Children's Hospital Brisbane, Brisbane, QLD
| | - Peter Wilson
- Children's Cancer Services, Lady Cilento Children's Hospital Brisbane, Brisbane, QLD
| | - Nicola Poplawski
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA.,Adult Genetics Unit, Royal Adelaide Hospital, University of Adelaide, Adelaide, SA
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA.,School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA.,School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA .,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA.,School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA.,School of Biological Sciences, University of Adelaide, Adelaide, SA.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA.,School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
9
|
An Exploration into the Origins and Pathogenesis of Anaplastic Large Cell Lymphoma, Anaplastic Lymphoma Kinase (ALK)-Positive. Cancers (Basel) 2017. [PMCID: PMC5664080 DOI: 10.3390/cancers9100141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
T-cell non-Hodgkin lymphoma is a heterogeneous disease ranging from malignancies arising from thymic T cells halted in development, through to mature, circulating peripheral T cells. The latter cases are diagnostically problematic with many entering the category of peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS). Anaplastic large cell lymphoma (ALCL) is one of the exceptions to this whereby aberrant expression of anaplastic lymphoma kinase (ALK) and the distinctive presence of cell surface CD30 places this entity in its own class. Besides the expression of a well-studied oncogenic translocation, ALCL, ALK+ may also have a unique pathogenesis with a thymic origin like T lymphoblastic lymphoma but a peripheral presentation akin to PTCL. This perspective discusses evidence towards the potential origin of ALCL, ALK+, and mechanisms that may give rise to its unique phenotype.
Collapse
|