1
|
Leon-Borges JA, Aguirre-García GJ, Silva VM, Lizardi-Jiménez MA. Hydrocarbons and other risks in a beekeeping area of México: the precautionary principle for prevention and biotechnology for remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69499-69513. [PMID: 37140869 DOI: 10.1007/s11356-023-27370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
The Yucatan Peninsula is the most important beekeeping region. However, the presence of hydrocarbons and pesticides violates the human right to a healthy environment twice over; it can affect human beings directly due to its toxicological characteristics, but it also constitutes a risk, not very well dimensioned, regarding the loss of biodiversity of the ecosystem via the impact on pollination. On the other hand, the precautionary principle obliges the authorities to prevent damage to the ecosystem that may be caused by the productive activity of individuals. Although there are studies that separately warn about the decrease of bees in the Yucatan due to industrial activity, this work has the novelty of presenting an intersectoral analysis of the risk that includes the soy industry, the swine industry and the tourist industry. The latter incorporates a new risk not considered until now, which is the presence of hydrocarbons in the ecosystem. Additionally, we can demonstrate that hydrocarbons, such as diesel and gasoline, should be avoided when using no genetically modified organisms (GMOs) in bioreactors. The objective of this work was to propose the precautionary principle around the risks in a beekeeping area and to propose biotechnology without using GMOs.
Collapse
Affiliation(s)
| | | | - Violeta Mendezcarlo Silva
- Universidad Autónoma de San Luis Potosí, Sierra Leona 550, 2da. Sección, C. P. 78210, San Luis Potosí , San Luis Potosí, Mexico
| | - Manuel Alejandro Lizardi-Jiménez
- CONACyT-Universidad Autónoma de San Luis Potosí, MDH, LGAC Estudios Sociales, Sierra Leona 550, 2da. Sección, C. P. 78210, San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
2
|
Chouhan S, Mulani R, Ansari H, Sindhav G, Rao P, Rawal RM, Saraf M, Goswami D. Rapid method for detection, quantification and measuring microbial degradation of pesticide-thiram using high performance thin layer chromatography (HPTLC). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7874-7885. [PMID: 36048383 DOI: 10.1007/s11356-022-22731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Thiram (tetramethylthiuramdisulfide) or thiram sulphide is a dithiocarbamate group of non-systemic group of fungicide which are applied for seed treatment, control of the crop pests, to repel animals, etc. Moreover, thiram has also been responsible to cause moderate skin sensitivity and eye irritation. Higher exposure to thiram might also lead to developmental damages to newborn and neurotoxic effects to non-target organisms. Advancing to prevent such toxic effects and prevention of soil fertility from thiram and thiram-like chemicals is indispensable. The analytical High-Performance Thin-Layer Chromatography (HPTLC) is a simple, quick and a reliable method was proposed and validated for the detection and quantification of various small molecules for many years. This manuscript represents the solution to use microbes to degrade the thiram present in the soil and for that, HPTLC based method to study thiram degradation by Pseudomonas has been designed. Herein, a HPTLC protocol formalised to reveal the detection and quantification of thiram within the range of 100 to 700 ng/spot on TLC plate. The same concentration was then used for calculating percent microbial degradation of thiram from the culture broth. To perform the microbial degradation of thiram, Pseudomonas otitidis strain TD-8 and Pseudomonas stutzeri strain TD-18 were taken as thiram degrader microbial strain. The efficacy of TD-8 to degrade thiram was identified to be 81 and 99% when grown in presence of thiram for 4 days and 8 days, respectively, while TD-18 strain's efficacy to degrade thiram was found to be 57% and 99% when grown in presence of thiram for 4 days and 8 days, respectively.
Collapse
Affiliation(s)
- Sonalkunwar Chouhan
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rinkal Mulani
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Hafsa Ansari
- Department of Zoology and Biomedical Technology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Gaurang Sindhav
- Department of Zoology and Biomedical Technology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Priyashi Rao
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
3
|
Danyal Y, Mahmood K, Ullah S, Rahim A, Raheem G, Khan AH, Ullah A. Phytoremediation of industrial effluents assisted by plant growth promoting bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5296-5311. [PMID: 36402881 DOI: 10.1007/s11356-022-23967-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Industrialization plays a crucial role in the economic development of a country; however, the effluents produced as a byproduct generally contain toxic substances which are detrimental to living organisms. In this regard, it is essential to treat these toxic effluents before exposing them to the natural environment by selecting the most appropriate method accordingly. Several techniques are used to remediate industrial effluents including physical, chemical, and biological. Although some physical and chemical remediation technologies are of substantially important in remediation of industrial effluents, however, these technologies are either expensive to be applied by developing countries or not suitable for remediation of all kinds of effluents. In contrast, biological remediation is cost effective, nature friendly, and easy to use for almost all kinds of effluents. Among biological remediation strategies, phytoremediation is considered to be the most suitable method for remediation of industrial effluents; however, the phytoremediation process is slow, takes time in application and some effluents even affect plants growth and development. Alternately, plant microbe interactions could be a winning partner to remediate industrial effluents more efficiently. Among the microbes, plant growth promoting bacteria (PGPB) not only improve plant growth but also help in degradation, sequestration, volatilization, solubilization, mobilization, and bioleaching of industrial effluents which subsequently improve the phytoremediation process. The current study discusses the role of PGPB in enhancing the phytoremediation processes of industrial effluents.
Collapse
Affiliation(s)
- Youshaa Danyal
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Kainat Mahmood
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Shariat Ullah
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Abdur Rahim
- Department of Zoology, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Gul Raheem
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Abid Ullah
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
4
|
Abdel-Fattah Mostafa A, Yassin MT, Dawoud TM, Al-Otibi FO, Sayed SR. Mycodegradation of diazinon pesticide utilizing fungal strains isolated from polluted soil. ENVIRONMENTAL RESEARCH 2022; 212:113421. [PMID: 35568233 DOI: 10.1016/j.envres.2022.113421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The current study aimed to isolate biodegradable soil fungi capable of metabolizing diazinon. The collected soil samples were investigated for diazinon pollution to detect the pesticide level in the polluted soil samples. Food poisoning techniques were utilized to preliminary investigate the biodegradation efficiency of the isolated fungal strains to diazinon pesticide using solid and liquid medium and also to detect their tolerance to different concentrations. GC-MS analysis of control and treated flasks were achieved to determine the diazinon residues for confirmation of the biodegradation efficiency. The total diazinon residues in the collected soil samples was found to be 0.106 mg/kg. Out of thirteen fungal strains isolated form diazinon polluted soils, six strains were potentially active in diazinon biodegradation. Food poisoning technique showed that A. niger, B. antennata, F. graminearum, P. digitatum, R. stolonifer and T. viride strains recorded fungal growth diameters of 65.2 ± 0.18, 57.5 ± 0.41, 47.2 ± 0.36, 56.5 ± 0.27, 85.0 ± 0.01, 85.0 ± 0.06 mm respectively in the treated group which were non significantly different compared to that of control (P > 0.05), indicating the high efficiency of these strains in diazinon degradation compared to the other isolated strains. GC-MS analysis revealed that B. antennata was the most efficient strain in diazinon degradation recording 32.24 ± 0.15 ppm concentration after 10 days incubation. Linear regression analysis confirmed that B. antennata was the most effective biodegradable strain recording the highest diazinon dissipation (83.88%) with the lowest T1/2 value of 5.96 days while T. viride, A. niger, R. stolonifer and F. graminearum exhibited a high biodegradable activities reducing diazinon to 80.26%, 78.22%, 77.36% and 75.43% respectively after 10 days incubation. In conclusion, these tolerant fungi could be considered as promising, eco-friendly and biodegradable fungi for the efficient and potential removal of hazardous diazinon from polluted soil.
Collapse
Affiliation(s)
- Ashraf Abdel-Fattah Mostafa
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia.
| | - Turki M Dawoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Fatimah O Al-Otibi
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Shaban Rm Sayed
- Electron Microscope Unit, Collage of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Siddiqui JA, Khan MM, Bamisile BS, Hafeez M, Qasim M, Rasheed MT, Rasheed MA, Ahmad S, Shahid MI, Xu Y. Role of Insect Gut Microbiota in Pesticide Degradation: A Review. Front Microbiol 2022; 13:870462. [PMID: 35591988 PMCID: PMC9111541 DOI: 10.3389/fmicb.2022.870462] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Insect pests cause significant agricultural and economic losses to crops worldwide due to their destructive activities. Pesticides are designed to be poisonous and are intentionally released into the environment to combat the menace caused by these noxious pests. To survive, these insects can resist toxic substances introduced by humans in the form of pesticides. According to recent findings, microbes that live in insect as symbionts have recently been found to protect their hosts against toxins. Symbioses that have been formed are between the pests and various microbes, a defensive mechanism against pathogens and pesticides. Insects' guts provide unique conditions for microbial colonization, and resident bacteria can deliver numerous benefits to their hosts. Insects vary significantly in their reliance on gut microbes for basic functions. Insect digestive tracts are very different in shape and chemical properties, which have a big impact on the structure and composition of the microbial community. Insect gut microbiota has been found to contribute to feeding, parasite and pathogen protection, immune response modulation, and pesticide breakdown. The current review will examine the roles of gut microbiota in pesticide detoxification and the mechanisms behind the development of resistance in insects to various pesticides. To better understand the detoxifying microbiota in agriculturally significant pest insects, we provided comprehensive information regarding the role of gut microbiota in the detoxification of pesticides.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | | | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Qasim
- Department of Agriculture and Forestry, Kohsar University Murree, Punjab, Pakistan
| | - Muhammad Tariq Rasheed
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Atif Rasheed
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | | | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Gangola S, Sharma A, Joshi S, Bhandari G, Prakash O, Govarthanan M, Kim W, Bhatt P. Novel mechanism and degradation kinetics of pesticides mixture using Bacillus sp. strain 3C in contaminated sites. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:104996. [PMID: 35082044 DOI: 10.1016/j.pestbp.2021.104996] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/07/2021] [Accepted: 11/17/2021] [Indexed: 05/20/2023]
Abstract
The present study has investigated the potential of Bacillus sp. strain 3C able to degrade mixture of pesticides from the environment. It showed maximum tolerance up to 450 mg·L-1 for cypermethrin, fipronil, imidacloprid and sulfosulfuron. The strain 3C was able to degrade up to the 94% of mixture of pesticides (20 mg·L-1) within 15 days of experiment. The Box-Behnken design of Response Surface Methodology (RSM) determined the optimized conditions as; inoculum size 3.0 × 107 CFU·mL-1, shaking speed 120 rpm, and pesticides concentration 80 mg·L-1. In soil-based bioremediation with strain 3C after 15 days degradation pattern was; 99, 94, 92, 92 and 7% for the imidacloprid, sulfosulfuron, fipronil, cypermethrin and control respectively. The novel intermediate metabolites for cypermethrin degradation were investigated as decyl isobutyl ester, phthalic acid, cyclopropane carboxylic acid tri dec-2-ynyl ester, 9- octadecanal, tridecane, propanoic acid, cyclohexene, bicyclo[2.2.1] heptan-2-ol, and acetic acid were identified using Gas chromatography Mass Spectrometry (GC-MS) with strain 3C. Moreover, the results of the laccase based enzymatic kinetics suggested that the rate of production was maximum in pesticides stress (94 μg·μL-1) whereas, in normal condition 51 μg·μL-1. The Km value found to be decreased in pesticides stress condition 12.25 and increment in Km 13.58 mM was observed without stress. Furthermore, aldehyde dehydrogenase (ALDH) and laccase encoding genes were amplified and linked with mixture of pesticides bioremediation. The efficiency of bacterial strain 3C, could be used for bioremediation of mixture of pesticides, and other xenobiotic compounds from the contaminated environments.
Collapse
Affiliation(s)
- Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal 263136, India.
| | - Anita Sharma
- Department of Microbiology, GB Pant University of Agriculture and Technology, Pantnagar 263139, India
| | - Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal 263136, India
| | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun 248016, India
| | - Om Prakash
- Department of Chemistry, GB Pant University of Agriculture and Technology, Pantnagar 263139, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Pankaj Bhatt
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
7
|
Abd Rani NF, Ahmad Kamil K, Aris F, Mohamed Yunus N, Zakaria NA. Atrazine-degrading bacteria for bioremediation strategy: A review. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.2000967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nur Fauziah Abd Rani
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| | | | - Farizan Aris
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| | | | - Nurul Aili Zakaria
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| |
Collapse
|
8
|
Huang Y, Xiao L, Li F, Xiao M, Lin D, Long X, Wu Z. Microbial Degradation of Pesticide Residues and an Emphasis on the Degradation of Cypermethrin and 3-phenoxy Benzoic Acid: A Review. Molecules 2018; 23:E2313. [PMID: 30208572 PMCID: PMC6225238 DOI: 10.3390/molecules23092313] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/09/2023] Open
Abstract
Nowadays, pesticides are widely used in preventing and controlling the diseases and pests of crop, but at the same time pesticide residues have brought serious harm to human's health and the environment. It is an important subject to study microbial degradation of pesticides in soil environment in the field of internationally environmental restoration science and technology. This paper summarized the microbial species in the environment, the study of herbicide and pesticides degrading bacteria and the mechanism and application of pesticide microbial degrading bacteria. Cypermethrin and other pyrethroid pesticides were used widely currently, while they were difficult to be degraded in the natural conditions, and an intermediate metabolite, 3-phenoxy benzoic acid would be produced in the degradation process, causing the secondary pollution of agricultural products and a series of problems. Taking it above as an example, the paper paid attention to the degradation process of microorganism under natural conditions and factors affecting the microbial degradation of pesticide. In addition, the developed trend of the research on microbial degradation of pesticide and some obvious problems that need further solution were put forward.
Collapse
Affiliation(s)
- Yichen Huang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Lijuan Xiao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Feiyu Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Mengshi Xiao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Xiaomei Long
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Zhijun Wu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|