1
|
Deshmukh R, Dewangan B, Harwansh RK, Agrawal R, Garg A, Chopra H. Current Trends in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Malaria: A Review. Curr Drug Deliv 2025; 22:310-331. [PMID: 38265385 DOI: 10.2174/0115672018291253240115012327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Malaria is still a major endemic disease transmitted in humans via Plasmodium-infected mosquitoes. The eradication of malarial parasites and the control measures have been rigorously and extensively deployed by local and international health organizations. Malaria's recurrence is a result of the failure to entirely eradicate it. The drawbacks related to malarial chemotherapy, non-specific targeting, multiple drug resistance, requirement of high doses, intolerable toxicity, indefinable complexity of Plasmodium's life cycle, and advent of drug-resistant strains of P. falciparum are the causes of the ineffective eradication measures. With the emergence of nanotechnology and its application in various industrial domains, the rising interest in the medical field, especially in epidemiology, has skyrocketed. The applications of nanosized carriers have sparked special attention, aiming towards minimizing the overall side effects caused due to drug therapy and avoiding bioavailability. The applications of concepts of nanobiotechnology to both vector control and patient therapy can also be one of the approaches. The current study focuses on the use of hybrid drugs as next-generation antimalarial drugs because they involve fewer drug adverse effects. The paper encompasses the numerous nanosized delivery-based systems that have been found to be effective among higher animal models, especially in treating malarial prophylaxis. This paper delivers a detailed review of diagnostic techniques, various nanotechnology approaches, the application of nanocarriers, and the underlying mechanisms for the management of malaria, thereby providing insights and the direction in which the current trends are imparted from the innovative and technological perspective.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | | | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Rutvi Agrawal
- Rajiv Academy for pharmacy, NH-2, Mathura-Delhi Road, Mathura- 281001, India
| | - Akash Garg
- Rajiv Academy for pharmacy, NH-2, Mathura-Delhi Road, Mathura- 281001, India
| | - Himansu Chopra
- Rajiv Academy for pharmacy, NH-2, Mathura-Delhi Road, Mathura- 281001, India
| |
Collapse
|
2
|
Maciel TR, Funguetto-Ribeiro AC, Olivo LB, Teixeira FEG, Pacheco CDO, de Araujo BV, Haas SE. Improved Malaria Therapy with Cationic Nanocapsules Demonstrated in Plasmodium berghei-Infected Rodents Using Whole Blood Surrogate Population PK/PD Modeling. Pharmaceutics 2024; 16:1369. [PMID: 39598493 PMCID: PMC11597719 DOI: 10.3390/pharmaceutics16111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives: Investigating how nanoparticle systems interact in whole blood (WB) is critical to evaluating the effectiveness of malaria therapy. Methods: We decided to establish a pharmacokinetic/pharmacodynamic (PK/PD) model of the quinine population in WB using Plasmodium berghei-infected mice, with a subsequent model comparison for nanocapsules coated with polysorbate (NCP80) or prepared with Eudragit® RS (NCEUD). The WB quinine population pharmacokinetic model in rats was developed using plasma and partition coefficients for rat erythrocytes. Mouse WB quinine population PK/PD modeling was developed using allometrically scaled literature-free mouse quinine pharmacokinetic data and covariate values to obtain a WB population pharmacokinetic model for quinine and nanocapsules in mice. This allowed for PK/PD modeling of the quinine population with the WB concentration and parasitemia data in mice. All models were built in NONMEN. Results: The WB quinine concentration profiles in rats were characterized using a two-compartment model. Nanoencapsulation reduced clearance and central compartment volume and increased peripherical compartimental volume. A maximum effect model described the PK/PD of the quinine WB population in mice, demonstrating that NCEUD enhances the antimalarial effect. Conclusions: Quinine WB is a good surrogate for describing the response to exposure in malaria. NCEUD outperformed NCP80 and free quinine, suggesting that cationic surfaces improve the potential for treating malaria.
Collapse
Affiliation(s)
- Tamara Ramos Maciel
- Pharmacology and Pharmacometric Laboratory, LABFAR, Federal University of Pampa (UNIPAMPA), Uruguaiana 97501-970, RS, Brazil; (T.R.M.); (A.C.F.-R.); (F.E.G.T.); (C.d.O.P.)
- Pharmaceutical Sciences Post Graduate Program, Federal University of Pampa (UNIPAMPA), Uruguaiana 97501-970, RS, Brazil
| | - Ana Claudia Funguetto-Ribeiro
- Pharmacology and Pharmacometric Laboratory, LABFAR, Federal University of Pampa (UNIPAMPA), Uruguaiana 97501-970, RS, Brazil; (T.R.M.); (A.C.F.-R.); (F.E.G.T.); (C.d.O.P.)
- Pharmaceutical Sciences Post Graduate Program, Federal University of Pampa (UNIPAMPA), Uruguaiana 97501-970, RS, Brazil
| | - Laura Ben Olivo
- Pharmaceutical Sciences Post Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 91060-100, RS, Brazil; (L.B.O.); (B.V.d.A.)
| | - Flávia Elizabete Guerra Teixeira
- Pharmacology and Pharmacometric Laboratory, LABFAR, Federal University of Pampa (UNIPAMPA), Uruguaiana 97501-970, RS, Brazil; (T.R.M.); (A.C.F.-R.); (F.E.G.T.); (C.d.O.P.)
- Pharmaceutical Sciences Post Graduate Program, Federal University of Pampa (UNIPAMPA), Uruguaiana 97501-970, RS, Brazil
| | - Camila de Oliveira Pacheco
- Pharmacology and Pharmacometric Laboratory, LABFAR, Federal University of Pampa (UNIPAMPA), Uruguaiana 97501-970, RS, Brazil; (T.R.M.); (A.C.F.-R.); (F.E.G.T.); (C.d.O.P.)
- Pharmaceutical Sciences Post Graduate Program, Federal University of Pampa (UNIPAMPA), Uruguaiana 97501-970, RS, Brazil
| | - Bibiana Verlindo de Araujo
- Pharmaceutical Sciences Post Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 91060-100, RS, Brazil; (L.B.O.); (B.V.d.A.)
| | - Sandra Elisa Haas
- Pharmacology and Pharmacometric Laboratory, LABFAR, Federal University of Pampa (UNIPAMPA), Uruguaiana 97501-970, RS, Brazil; (T.R.M.); (A.C.F.-R.); (F.E.G.T.); (C.d.O.P.)
- Pharmaceutical Sciences Post Graduate Program, Federal University of Pampa (UNIPAMPA), Uruguaiana 97501-970, RS, Brazil
| |
Collapse
|
3
|
Najer A. Pathogen-binding nanoparticles to inhibit host cell infection by heparan sulfate and sialic acid dependent viruses and protozoan parasites. SMART MEDICINE 2024; 3:e20230046. [PMID: 39188697 PMCID: PMC11235646 DOI: 10.1002/smmd.20230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 08/28/2024]
Abstract
Global health faces an immense burden from infectious diseases caused by viruses and intracellular protozoan parasites such as the coronavirus disease (COVID-19) and malaria, respectively. These pathogens propagate through the infection of human host cells. The first stage of this host cell infection mechanism is cell attachment, which typically involves interactions between the infectious agent and surface components on the host cell membranes, specifically heparan sulfate (HS) and/or sialic acid (SA). Hence, nanoparticles (NPs) which contain or mimic HS/SA that can directly bind to the pathogen surface and inhibit cell infection are emerging as potential candidates for an alternative anti-infection therapeutic strategy. These NPs can be prepared from metals, soft matter (lipid, polymer, and dendrimer), DNA, and carbon-based materials among others and can be designed to include aspects of multivalency, broad-spectrum activity, biocidal mechanisms, and multifunctionality. This review provides an overview of such anti-pathogen nanomedicines beyond drug delivery. Nanoscale inhibitors acting against viruses and obligate intracellular protozoan parasites are discussed. In the future, the availability of broadly applicable nanotherapeutics would allow early tackling of existing and upcoming viral diseases. Invasion inhibitory NPs could also provide urgently needed effective treatments for protozoan parasitic infections.
Collapse
Affiliation(s)
- Adrian Najer
- Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
4
|
Omidian H, Mfoafo K. Exploring the Potential of Nanotechnology in Pediatric Healthcare: Advances, Challenges, and Future Directions. Pharmaceutics 2023; 15:1583. [PMID: 37376032 DOI: 10.3390/pharmaceutics15061583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The utilization of nanotechnology has brought about notable advancements in the field of pediatric medicine, providing novel approaches for drug delivery, disease diagnosis, and tissue engineering. Nanotechnology involves the manipulation of materials at the nanoscale, resulting in improved drug effectiveness and decreased toxicity. Numerous nanosystems, including nanoparticles, nanocapsules, and nanotubes, have been explored for their therapeutic potential in addressing pediatric diseases such as HIV, leukemia, and neuroblastoma. Nanotechnology has also shown promise in enhancing disease diagnosis accuracy, drug availability, and overcoming the blood-brain barrier obstacle in treating medulloblastoma. It is important to acknowledge that while nanotechnology offers significant opportunities, there are inherent risks and limitations associated with the use of nanoparticles. This review provides a comprehensive summary of the existing literature on nanotechnology in pediatric medicine, highlighting its potential to revolutionize pediatric healthcare while also recognizing the challenges and limitations that need to be addressed.
Collapse
Affiliation(s)
- Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Kwadwo Mfoafo
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
5
|
Chaves JB, Portugal Tavares de Moraes B, Regina Ferrarini S, Noé da Fonseca F, Silva AR, Gonçalves-de-Albuquerque CF. Potential of nanoformulations in malaria treatment. Front Pharmacol 2022; 13:999300. [PMID: 36386185 PMCID: PMC9645116 DOI: 10.3389/fphar.2022.999300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Malaria is caused by the protozoan Plasmodium sp and affects millions of people worldwide. Its clinical form ranges from asymptomatic to potentially fatal and severe. Current treatments include single drugs such as chloroquine, lumefantrine, primaquine, or in combination with artemisinin or its derivatives. Resistance to antimalarial drugs has increased; therefore, there is an urgent need to diversify therapeutic approaches. The disease cycle is influenced by biological, social, and anthropological factors. This longevity and complexity contributes to the records of drug resistance, where further studies and proposals for new therapeutic formulations are needed for successful treatment of malaria. Nanotechnology is promising for drug development. Preclinical formulations with antimalarial agents have shown positive results, but only a few have progressed to clinical phase. Therefore, studies focusing on the development and evaluation of antimalarial formulations should be encouraged because of their enormous therapeutic potential.
Collapse
Affiliation(s)
- Janaina Braga Chaves
- Immunopharmacology Laboratory, Department of Biochemistry, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro, Brazil
| | - Bianca Portugal Tavares de Moraes
- Immunopharmacology Laboratory, Department of Biochemistry, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro, Brazil
| | - Stela Regina Ferrarini
- Pharmaceutical Nanotechnology Laboratory, Federal University of Mato Grosso of Sinop Campus—UFMT, Cuiabá, Brazil
| | - Francisco Noé da Fonseca
- Empresa Brasileira de Pesquisa Agropecuária, Parque Estação Biológica—PqEB, EMBRAPA, Brasília, Brazil
| | - Adriana Ribeiro Silva
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ—UNIRIO, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Immunopharmacology Laboratory, Department of Biochemistry, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ—UNIRIO, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Erhunse N, Sahal D. Protecting future antimalarials from the trap of resistance: Lessons from artemisinin-based combination therapy (ACT) failures. J Pharm Anal 2021; 11:541-554. [PMID: 34765267 PMCID: PMC8572664 DOI: 10.1016/j.jpha.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 11/01/2022] Open
Abstract
Having faced increased clinical treatment failures with dihydroartemisinin-piperaquine (DHA-PPQ), Cambodia swapped the first line artemisinin-based combination therapy (ACT) from DHA-PPQ to artesunate-mefloquine given that parasites resistant to piperaquine are susceptible to mefloquine. However, triple mutants have now emerged, suggesting that drug rotations may not be adequate to keep resistance at bay. There is, therefore, an urgent need for alternative treatment strategies to tackle resistance and prevent its spread. A proper understanding of all contributors to artemisinin resistance may help us identify novel strategies to keep artemisinins effective until new drugs become available for their replacement. This review highlights the role of the key players in artemisinin resistance, the current strategies to deal with it and suggests ways of protecting future antimalarial drugs from bowing to resistance as their predecessors did.
Collapse
Affiliation(s)
- Nekpen Erhunse
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Edo-State, Nigeria
| | - Dinkar Sahal
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
7
|
Anamika J, Nikhar V, Laxmikant G, Priya S, Sonal V, Vyas SP. Nanobiotechnological modules as molecular target tracker for the treatment and prevention of malaria: options and opportunity. Drug Deliv Transl Res 2021; 10:1095-1110. [PMID: 32378173 PMCID: PMC7223109 DOI: 10.1007/s13346-020-00770-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Malaria is one of the major infectious diseases that remains a constant challenge to human being mainly due to the emergence of drug-resistant strains of parasite and also the availability of drugs, which are non-specific for their pharmacodynamic activity and known to be associated with multiple side effects. The disease has acquired endemic proportions in tropical countries where the hygienic conditions are not satisfactory while the environmental conditions favor the proliferation of parasite and its transmission, particularly through the female anopheles. It is obvious that to square up the problems, there is a need for designing and development of more effective drugs, which can combat the drug-resistant strains of the parasite. Molecular biology of the parasite and its homing into host cellular tropics provide multiple drug targets that could judiciously be considered for engineering and designing of new generation antimalarial drugs and also drug delivery systems. Though the recent reports document that against malaria parasite the vaccine could be developed, nevertheless, due to smart mutational change overs by the parasite, it is able to bypass the immune surveillance. The developed vaccine therefore failed to assure absolute protection against the malarial infection. In the conventional mode of treatment antimalarial drugs, the dose and dosage regimen that is followed at large crops up the contraindicative manifestations, and hence compromising the effective treatment. The emerging trends and new updates in contemporary biological sciences, material sciences, and drug delivery domain have enabled us with the availability of a multitude of mode and modules which could plunge upon the nanotechnology in particular to treat this challenging infection. The nanotechnology-based option may be tuned or customized as per the requirements to mark and target i.e. the infected RBCs, for targeted drug delivery. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jain Anamika
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Vishwakarma Nikhar
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Gautam Laxmikant
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Shrivastava Priya
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Vyas Sonal
- Department of Pathology, Index Medical College, Hospital & Research Centre, Indore, M.P., India
| | - S P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India.
| |
Collapse
|
8
|
Resistance to Artemisinin Combination Therapies (ACTs): Do Not Forget the Partner Drug! Trop Med Infect Dis 2019; 4:tropicalmed4010026. [PMID: 30717149 PMCID: PMC6473515 DOI: 10.3390/tropicalmed4010026] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/30/2023] Open
Abstract
Artemisinin-based combination therapies (ACTs) have become the mainstay for malaria treatment in almost all malaria endemic settings. Artemisinin derivatives are highly potent and fast acting antimalarials; but they have a short half-life and need to be combined with partner drugs with a longer half-life to clear the remaining parasites after a standard 3-day ACT regimen. When introduced, ACTs were highly efficacious and contributed to the steep decrease of malaria over the last decades. However, parasites with decreased susceptibility to artemisinins have emerged in the Greater Mekong Subregion (GMS), followed by ACTs’ failure, due to both decreased susceptibility to artemisinin and partner drug resistance. Therefore, there is an urgent need to strengthen and expand current resistance surveillance systems beyond the GMS to track the emergence or spread of artemisinin resistance. Great attention has been paid to the spread of artemisinin resistance over the last five years, since molecular markers of decreased susceptibility to artemisinin in the GMS have been discovered. However, resistance to partner drugs is critical, as ACTs can still be effective against parasites with decreased susceptibility to artemisinins, when the latter are combined with a highly efficacious partner drug. This review outlines the different mechanisms of resistance and molecular markers associated with resistance to partner drugs for the currently used ACTs. Strategies to improve surveillance and potential solutions to extend the useful therapeutic lifespan of the currently available malaria medicines are proposed.
Collapse
|