1
|
Cheng W, Cao J, Xia Y, Lei X, Wu L, Shi L. A DNA methylation profile of long non-coding RNAs can predict OS in prostate cancer. Bioengineered 2021; 12:3252-3262. [PMID: 34238128 PMCID: PMC8806446 DOI: 10.1080/21655979.2021.1945991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most common male reproductive tract malignant tumor, accurate evaluation of PCa characterization and prognostic prediction at diagnosis are vital for the effective administration of the disease, especially at the molecular level. In this study, 48 CpG sites with differential methylation associated with overall survival (OS) were screened out between PCa and normal adjacent tissues. 16 CpG sites were selected by the least absolute shrinkage and selection operator (LASSO) and the risk score formula for methylated-based classifier was established. For 16-lncRNAs-CpG-classifier, the area under the curve (AUC) were 0.890, 0.917, and 0.932 at 3 years, 5 years and 7 years, respectively. Kaplan–Meier curves indicated that patients with high-risk scores had worse OS than those with low-risk scores. Prognostic methylation model of lncRNAs was identified from the whole genome in patients with PCa. This novel finding provides a novel insight for screening biomarkers of a prognosis for PCa.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Neurology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Jie Cao
- Department of Tanslational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Xia
- Department of Clinical Medical Laboratory, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xin Lei
- Department of Tanslational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Wu
- Department of Clinical Transfusion, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liang Shi
- Department of Tanslational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Ravi P, Singh SP, Kang JW, Tran S, Dasari RR, So PTC, Liepmann D, Katti K, Katti D, Renugopalakrishnan V, Paulmurugan R. Spectrochemical Probing of MicroRNA Duplex Using Spontaneous Raman Spectroscopy for Biosensing Applications. Anal Chem 2020; 92:14423-14431. [PMID: 32985868 DOI: 10.1021/acs.analchem.0c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MicroRNAs are emerging as both diagnostic and therapeutic targets in different human pathologies. An accurate understanding of the structural dependency of microRNAs for their biological functions is essential for designing synthetic oligos with various base and linkage modifications that can transform into highly sensitive diagnostic devices and therapeutic molecules. In this proof-of-principle study, we have utilized label-free spontaneous Raman spectroscopy to understand the structural differences in sense and antisense microRNA-21 by hybridizing them with complementary RNA and DNA oligos. Overall, the results suggest that the changes in the Raman band at 785 cm-1 originating from the phosphodiester bond of the nucleic acid backbone, linking 5' phosphate of the nucleic acid with 3' OH of the other nucleotide, can serve as a marker to identify these structural variations. Our results support the application of Raman spectroscopy in discerning intramolecular (ssRNA and ssDNA) and intermolecular (RNA-RNA, RNA-DNA, and DNA-DNA hybrids) interactions of nucleic acids. This is potentially useful for developing biosensors to quantify microRNAs in clinical samples and to design therapeutic microRNAs with robust functionality.
Collapse
Affiliation(s)
- Preetham Ravi
- Center for Engineered Cancer Testbeds, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States.,Department of Chemistry, Northeastern University, Boston, Massachusetts 02115, United States.,Boston Children's Hospital, Boston, Massachusetts 02115, United States.,Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Surya Pratap Singh
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka 580011, India
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sarah Tran
- Cellular Pathway Imaging Laboratory (CPIL), Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Suite 2236, Palo Alto, California 94304, United States
| | - Ramachandra R Dasari
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peter T C So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dorian Liepmann
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Kalpana Katti
- Center for Engineered Cancer Testbeds, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dinesh Katti
- Center for Engineered Cancer Testbeds, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Venkatesan Renugopalakrishnan
- Department of Chemistry, Northeastern University, Boston, Massachusetts 02115, United States.,Boston Children's Hospital, Boston, Massachusetts 02115, United States.,Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ramasamy Paulmurugan
- Cellular Pathway Imaging Laboratory (CPIL), Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Suite 2236, Palo Alto, California 94304, United States
| |
Collapse
|
3
|
Long non-coding RNA HOTAIRM1 promotes proliferation and inhibits apoptosis of glioma cells by regulating the miR-873-5p/ZEB2 axis. Chin Med J (Engl) 2020; 133:174-182. [PMID: 31929367 PMCID: PMC7028173 DOI: 10.1097/cm9.0000000000000615] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Glioblastoma is one of the most common malignant brain tumors. Conventional clinical treatment of glioblastoma is not sufficient, and the molecular mechanism underlying the initiation and development of this disease remains unclear. Our study aimed to explore the expression and function of miR-873a-5p in glioblastoma and related molecular mechanism. Methods We analyzed the most dysregulated microRNAs from the Gene Expression Omnibus (GEO) database and examined the expression of miR-873-5p in 20 glioblastoma tissues compared with ten normal brain tissues collected in the Zhejiang Tongde Hospital. We then overexpressed or inhibited miR-873-5p expression in U87 glioblastoma cell lines and analyzed the phenotype using the cell counting kit-8 assay, wound healing assay, and apoptosis. In addition, we predicted upstream and downstream genes of miR-873-5p in glioblastoma using bioinformatics analysis and tested our hypothesis in U87 cells using the luciferase reporter gene assay and Western blotting assay. The differences between two groups were analyzed by Student's t test. The Kruskal-Wallis test was used for the comparison of multiple groups. A P < 0.05 was considered to be significant. Results The miR-873-5p was downregulated in glioblastoma tissues compared with that in normal brain tissues (normal vs. tumor, 0.762 ± 0.231 vs. 0.378 ± 0.114, t = 4.540, P < 0.01). Overexpression of miR-873-5p inhibited cell growth (t = 6.095, P < 0.01) and migration (t = 3.142, P < 0.01) and promoted cell apoptosis (t = 4.861, P < 0.01), while inhibition of miR-873-5p had the opposite effect. Mechanistically, the long non-coding RNA HOTAIRM1 was found to act as a sponge of miR-873-5p to activate ZEB2 expression in U87 cells. Conclusions We uncovered a novel HOTAIRM1/miR-873-5p/ZEB2 axis in glioblastoma cells, providing new insight into glioblastoma progression and a theoretical basis for the treatment of glioblastoma.
Collapse
|
4
|
LNC942 promoting METTL14-mediated m 6A methylation in breast cancer cell proliferation and progression. Oncogene 2020; 39:5358-5372. [PMID: 32576970 DOI: 10.1038/s41388-020-1338-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Increasing evidence supports that long noncoding RNAs (lncRNAs) act as master regulators involved in tumorigenesis and development at the N6-methyladenine (m6A) epigenetic modification level. However, the underlying regulatory mechanism in breast cancer (BRCA) remains elusive. Here, we unveil that LINC00942 (LNC942) exerts its functions as an oncogene in promoting METTL14-mediated m6A methylation and regulating the expression and stability of its target genes CXCR4 and CYP1B1 in BRCA initiation and progression. Specifically, LNC942 and METTL14 were significantly upregulated accompanied with the upregulation of m6A levels in BRCA cells and our included BRCA cohorts (n = 150). Functionally, LNC942 elicits potent oncogenic effects on promoting cell proliferation and colony formation and inhibiting cell apoptosis, subsequently elevating METTL14-mediated m6A methylation levels and its associated mRNA stability and protein expression of CXCR4 and CYP1B1 in BRCA cells. Mechanistically, LNC942 directly recruits METTL14 protein by harboring the specific recognize sequence (+176-+265), thereby stabilized the expression of downstream targets of LNC942 including CXCR4 and CYP1B1 through posttranscriptional m6A methylation modification in vitro and in vivo. Therefore, our results uncover a novel LNC942-METTL14-CXCR4/CYP1B1 signaling axis, which provides new targets and crosstalk m6A epigenetic modification mechanism for BRCA prevention and treatment.
Collapse
|