1
|
Fujinami K, Waheed N, Laich Y, Yang P, Fujinami-Yokokawa Y, Higgins JJ, Lu JT, Curtiss D, Clary C, Michaelides M. Stargardt macular dystrophy and therapeutic approaches. Br J Ophthalmol 2024; 108:495-505. [PMID: 37940365 PMCID: PMC10958310 DOI: 10.1136/bjo-2022-323071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Stargardt macular dystrophy (Stargardt disease; STGD1; OMIM 248200) is the most prevalent inherited macular dystrophy. STGD1 is an autosomal recessive disorder caused by multiple pathogenic sequence variants in the large ABCA4 gene (OMIM 601691). Major advances in understanding both the clinical and molecular features, as well as the underlying pathophysiology, have culminated in many completed, ongoing and planned human clinical trials of novel therapies.The aims of this concise review are to describe (1) the detailed phenotypic and genotypic characteristics of the disease, multimodal imaging findings, natural history of the disease, and pathogenesis, (2) the multiple avenues of research and therapeutic intervention, including pharmacological, cellular therapies and diverse types of genetic therapies that have either been investigated or are under investigation and (3) the exciting novel therapeutic approaches on the translational horizon that aim to treat STGD1 by replacing the entire 6.8 kb ABCA4 open reading frame.
Collapse
Affiliation(s)
- Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Nadia Waheed
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Yannik Laich
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Eye Center, Medical Center, University of Freiburg Faculty of Medicine, Freiburg, Germany
| | - Paul Yang
- Oregon Health and Science University Casey Eye Institute, Portland, Oregon, USA
| | - Yu Fujinami-Yokokawa
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
- Institute of Ophthalmology, University College London, London, UK
- Department of Health Policy and Management, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | - Jonathan T Lu
- SalioGen Therapeutics Inc, Lexington, Massachusetts, USA
| | - Darin Curtiss
- Applied Genetic Technologies Corporation, Alachua, Florida, USA
| | - Cathryn Clary
- SalioGen Therapeutics Inc, Lexington, Massachusetts, USA
| | - Michel Michaelides
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Liu X, Meng X, Yang L, Long Y, Fujinami-Yokokawa Y, Ren J, Kurihara T, Tsubota K, Tsunoda K, Fujinami K, Li S. Clinical and genetic characteristics of Stargardt disease in a large Western China cohort: Report 1. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:694-707. [PMID: 32845068 DOI: 10.1002/ajmg.c.31838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023]
Abstract
Stargardt disease 1 (STGD1) is the most prevalent retinal dystrophy caused by pathogenic biallelic ABCA4 variants. Forty-two unrelated patients mostly originating from Western China were recruited. Comprehensive ophthalmological examinations, including visual acuity measurements (subjective function), fundus autofluorescence (retinal imaging), and full-field electroretinography (objective function), were performed. Next-generation sequencing (target/whole exome) and direct sequencing were conducted. Genotype grouping was performed based on the presence of deleterious variants. The median age of onset/age was 10.0 (5-52)/29.5 (12-72) years, and the median visual acuity in the right/left eye was 1.30 (0.15-2.28)/1.30 (0.15-2.28) in the logarithm of the minimum angle of resolution unit. Ten patients (10/38, 27.0%) showed confined macular dysfunction, and 27 (27/37, 73.7%) had generalized retinal dysfunction. Fifty-eight pathogenic/likely pathogenic ABCA4 variants, including 14 novel variants, were identified. Eight patients (8/35, 22.8%) harbored multiple deleterious variants, and 17 (17/35, 48.6%) had a single deleterious variant. Significant associations were revealed between subjective functional, retinal imaging, and objective functional groups, identifying a significant genotype-phenotype association. This study illustrates a large phenotypic/genotypic spectrum in a large well-characterized STGD1 cohort. A distinct genetic background of the Chinese population from the Caucasian population was identified; meanwhile, a genotype-phenotype association was similarly represented.
Collapse
Affiliation(s)
- Xiao Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Xiaohong Meng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lizhu Yang
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yanling Long
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Fujinami-Yokokawa
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan.,Department of Public Health Research, Yokokawa Clinic, Osaka, Japan
| | - Jiayun Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazushige Tsunoda
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Shiying Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | |
Collapse
|