1
|
Xin X, Wang S, Pan Y, Ye L, Zhai T, Gu M, Wang Y, Zhang J, Li X, Yang W, Zhang S. MYB Transcription Factor CDC5 Activates CBF3 Expression to Positively Regulates Freezing Tolerance via Cooperating With ICE1 and Histone Modification in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39248548 DOI: 10.1111/pce.15144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
The freezing temperature greatly limits the growth, development and productivity of plants. The C-repeat/DRE binding factor (CBF) plays a major role in cold acclimation, enabling plants to increase their freezing tolerance. Notably, the INDUCER OF CBF EXPRESSION1 (ICE1) protein has garnered attention for its pivotal role in bolstering plants' resilience against freezing through transcriptional upregulation of DREB1A/CBF3. However, the research on the interaction between ICE1 and other transcription factors and its function in regulating cold stress tolerance is largely inadequate. In this study, we found that a R2R3 MYB transcription factor CDC5 interacts with ICE1 and regulates the expression of CBF3 by recruiting RNA polymerase II, overexpression of ICE1 can complements the freezing deficient phenotype of cdc5 mutant. CDC5 increases the expression of CBF3 in response to freezing. Furthermore, CDC5 influences the expression of CBF3 by altering the chromatin status through H3K4me3 and H3K27me3 modifications. Our work identified a novel component that regulates CBF3 transcription in both ICE1-dependent and ICE1-independent manner, improving the understanding of the freezing signal transduction in plants.
Collapse
Affiliation(s)
- Xin Xin
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Shu Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yunjiao Pan
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Linhan Ye
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Tingting Zhai
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Mengjie Gu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yanjiao Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jiedao Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xiang Li
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Wei Yang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Shuxin Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
2
|
Dou N, Li L, Fang Y, Fan S, Wu C. Comparative Physiological and Transcriptome Analyses of Tolerant and Susceptible Cultivars Reveal the Molecular Mechanism of Cold Tolerance in Anthurium andraeanum. Int J Mol Sci 2023; 25:250. [PMID: 38203421 PMCID: PMC10779044 DOI: 10.3390/ijms25010250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Anthurium andraeanum is a tropical ornamental flower. The cost of Anthurium production is higher under low temperature (non-freezing) conditions; therefore, it is important to increase its cold tolerance. However, the molecular mechanisms underlying the response of Anthurium to cold stress remain elusive. In this study, comparative physiological and transcriptome sequencing analyses of two cultivars with contrasting cold tolerances were conducted to evaluate the cold stress response at the flowering stage. The activities of superoxide dismutase and peroxidase and the contents of proline, soluble sugar, and malondialdehyde increased under cold stress in the leaves of the cold tolerant cultivar Elegang (E) and cold susceptible cultivar Menghuang (MH), while the soluble protein content decreased in MH and increased in E. Using RNA sequencing, 24,695 differentially expressed genes (DEGs) were identified from comparisons between cultivars under the same conditions or between the treatment and control groups of a single cultivar, 9132 of which were common cold-responsive DEGs. Heat-shock proteins and pectinesterases were upregulated in E and downregulated in MH, indicating that these proteins are essential for Anthurium cold tolerance. Furthermore, four modules related to cold treatment were obtained by weighted gene co-expression network analysis. The expression of the top 20 hub genes in these modules was induced by cold stress in E or MH, suggesting they might be crucial contributors to cold tolerance. DEGs were significantly enriched in plant hormone signal transduction pathways, trehalose metabolism, and ribosomal proteins, suggesting these processes play important roles in Anthurium's cold stress response. This study provides a basis for elucidating the mechanism of cold tolerance in A. andraeanum and potential targets for molecular breeding.
Collapse
Affiliation(s)
- Na Dou
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China (S.F.)
| | - Li Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China (S.F.)
| | - Yifu Fang
- Institute of Ornamental Plants, Shandong Provincial Academy of Forestry, Wenhua East Road 42, Jinan 250010, China;
| | - Shoujin Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China (S.F.)
| | - Chunxia Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China (S.F.)
| |
Collapse
|
3
|
Zaman S, Shen J, Wang S, Song D, Wang H, Ding S, Pang X, Wang M, Sabir IA, Wang Y, Ding Z. Effect of shading on physiological attributes and comparative transcriptome analysis of Camellia sinensis cultivar reveals tolerance mechanisms to low temperatures. FRONTIERS IN PLANT SCIENCE 2023; 14:1114988. [PMID: 36818843 PMCID: PMC9931901 DOI: 10.3389/fpls.2023.1114988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Tea is a vital beverage crop all over the world, including in China. Low temperatures restrict its growth, development, and terrestrial distribution, and cold event variability worsens cold damage. However, the physiological and molecular mechanisms of Camellia sinensis under shade in winter remain unclear. In our study, tea leaves were utilized for physiological attributes and transcriptome analysis in November and December in three shading groups and no-shade control plants. When compared to the no-shade control plants, the shading group protected tea leaves from cold damage, increased photochemical efficiency (Fv/Fm) and soil plant analysis development (SPAD), and sustained chlorophyll a, chlorophyll b, chlorophyll, and carotenoid contents by physiological mean. Then, transcriptome analysis revealed 20,807 differentially expressed genes (DEGs) and transcription factors (TFs) in November and December. A comparative study of transcriptome resulted in 3,523 DEGs and many TFs under SD0% vs. SD30%, SD0% vs. SD60%, and SD0% vs. SD75% of shading in November and December. Statistically, 114 DEGs were downregulated and 72 were upregulated under SD0% vs. SD30%. SD0% vs. SD60% resulted in 154 DEGs, with 60 downregulated and 94 upregulated. Similarly, there were 505 DEGs of which 244 were downregulated and 263 were upregulated under SD0% vs. SD75% of shading throughout November. However, 279 DEGs were downregulated and 105 were upregulated under SD0% vs. SD30%. SD0% vs. SD60% resulted in 296 DEGs, with 172 downregulated and 124 upregulated. Finally, 2,173 DEGs were regulated in December, with 1,428 downregulated and 745 upregulated under SD0% vs. SD75%. These indicate that the number of downregulated DEGs in December was higher than the number of upregulated DEGs in November during low temperatures. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of differentially expressed genes were highly regulated in the photosynthesis, plant hormone signal transduction, and mitogen-activated protein kinase (MAPK) signaling pathways. However, qRT-PCR and RNA-seq relative expression of photosynthetic (DEGs) Lhcb2 in both November and December, plant hormone (DEGs) BRI1 and JAZ in November and IAA and ERF1 in December, and key DEGs of MAPK signal transduction FLS2, CHIB, and MPK4 in November and RBOH, MKK4_5, and MEKK1 in December in three shading groups and no-shade control plants responded to tea cold tolerance. The enhanced expression of light-harvesting photosystem I gene Lhca5, light-harvesting photosystem II gene Lhcb2, and mitogen-activated protein kinases MEKK1 and MPK4/6 enhance the cold-tolerance mechanism of C. sinensis. These comprehensive transcriptomic findings are significant for furthering our understanding of the genes and underlying regulatory mechanisms of shade-mediated low-temperature stress tolerance in horticultural crops.
Collapse
Affiliation(s)
- Shah Zaman
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuangshuang Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dapeng Song
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Hui Wang
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Shibo Ding
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Xu Pang
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Mengqi Wang
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Irfan Ali Sabir
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Molecular Mechanism of Cold Tolerance of Centipedegrass Based on the Transcriptome. Int J Mol Sci 2023; 24:ijms24021265. [PMID: 36674780 PMCID: PMC9860682 DOI: 10.3390/ijms24021265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Low temperature is an important limiting factor in the environment that affects the distribution, growth and development of warm-season grasses. Transcriptome sequencing has been widely used to mine candidate genes under low-temperature stress and other abiotic stresses. However, the molecular mechanism of centipedegrass in response to low-temperature stress was rarely reported. To understand the molecular mechanism of centipedegrass in response to low-temperature stress, we measured physiological indicators and sequenced the transcriptome of centipedegrass under different stress durations. Under cold stress, the SS content and APX activity of centipedegrass increased while the SOD activity decreased; the CAT activity, POD activity and flavonoid content first increased and then decreased; and the GSH-Px activity first decreased and then increased. Using full-length transcriptome and second-generation sequencing, we obtained 38.76 G subreads. These reads were integrated into 177,178 isoforms, and 885 differentially expressed transcripts were obtained. The expression of AUX_IAA and WRKY transcription factors and HSF transcription-influencing factors increased during cold stress. Through KEGG enrichment analysis, we determined that arginine and proline metabolism, plant circadian rhythm, plant hormone signal transduction and the flavonoid biosynthesis pathways played important roles in the cold stress resistance of centipedegrass. In addition, by using weighted gene coexpression network analysis (WGCNA), we determined that the turquoise module was significantly correlated with SS content and APX activity, while the blue module was significantly negatively correlated with POD and CAT activity. This paper is the first to report the response of centipedegrass to cold stress at the transcriptome level. Our results help to clarify the molecular mechanisms underlying the cold tolerance of warm-season grasses.
Collapse
|
5
|
Chao L, Kim Y, Gilmour SJ, Thomashow MF. Temperature modulation of CAMTA3 gene induction activity is mediated through the DNA binding domain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:235-248. [PMID: 35960653 PMCID: PMC9826522 DOI: 10.1111/tpj.15944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 06/02/2023]
Abstract
The calmodulin-binding transcription activator (CAMTA) proteins of Arabidopsis thaliana play a major role in cold acclimation, contributing to the rapid induction of the C-REPEAT BINDING FACTOR (CBF) genes and other genes that impart freezing tolerance in plants exposed to cold temperature (4°C). The goal of this study was to better understand how the gene induction activity of CAMTA3 is modulated by temperature. Our results indicate that a severely truncated version of CAMTA3, CAMTA3334 , which includes the N-terminal CG-1 DNA binding domain and a newly identified transcriptional activation domain (TAD), was able to rapidly induce the expression of CBF2 and two newly identified target genes, EXPANSIN-LIKE A1 (EXPL1) and NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3), in response to cold temperature. Additionally, CAMTA3334 was able to restore freezing tolerance when expressed in a camta23 double mutant. The ability of CAMTA3 and CAMTA3334 to induce target genes at cold temperature did not involve increased levels of these proteins or increased binding of these proteins to target gene promoters in cold-treated plants. Rather, domain-swapping experiments indicated that the CAMTA3 CG-1 domain conferred temperature dependence to the ability of the CAMTA3 TAD to induce gene expression. The CG-1 domain also enabled the TAD to induce the expression of target genes at a moderate temperature (22°C) in response to cycloheximide treatment, consistent with the TAD activity not being intrinsically temperature dependent. We propose a working model in which the temperature modulation of CAMTA3 gene induction activity occurs independently from the C-terminal calmodulin-binding domains that previously have been proposed to activate CAMTA3 transcriptional activity in response to cold temperature.
Collapse
Affiliation(s)
- Lumen Chao
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
- MSU Plant Resilience InstituteMichigan State UniversityEast LansingMI48824USA
| | - Yongsig Kim
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
- MSU Plant Resilience InstituteMichigan State UniversityEast LansingMI48824USA
| | - Sarah J. Gilmour
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
- MSU Plant Resilience InstituteMichigan State UniversityEast LansingMI48824USA
| | - Michael F. Thomashow
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
- MSU Plant Resilience InstituteMichigan State UniversityEast LansingMI48824USA
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
6
|
Lunn D, Smith GA, Wallis JG, Browse J. Overexpression mutants reveal a role for a chloroplast MPD protein in regulation of reactive oxygen species during chilling in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2666-2681. [PMID: 35084440 PMCID: PMC9015808 DOI: 10.1093/jxb/erac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) contribute to cellular damage in several different contexts, but their role during chilling damage is poorly defined. Chilling sensitivity both limits the distribution of plant species and causes devastating crop losses worldwide. Our screen of chilling-tolerant Arabidopsis (Arabidopsis thaliana) for mutants that suffer chilling damage identified a gene (At4g03410) encoding a chloroplast Mpv17_PMP22 protein, MPD1, with no previous connection to chilling. The chilling-sensitive mpd1-1 mutant is an overexpression allele that we successfully phenocopied by creating transgenic lines with a similar level of MPD1 overexpression. In mammals and yeast, MPD1 homologs are associated with ROS management. In chilling conditions, Arabidopsis overexpressing MPD1 accumulated H2O2 to higher levels than wild-type controls and exhibited stronger induction of ROS response genes. Paraquat application exacerbated chilling damage, confirming that the phenotype occurs due to ROS dysregulation. We conclude that at low temperature increased MPD1 expression results in increased ROS production, causing chilling damage. Our discovery of the effect of MPD1 overexpression on ROS production under chilling stress implies that investigation of the nine other members of the Mpv17_PMP22 family in Arabidopsis may lead to new discoveries regarding ROS signaling and management in plants.
Collapse
Affiliation(s)
- Daniel Lunn
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Gracen A Smith
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - James G Wallis
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| |
Collapse
|
7
|
Mapping of Quantitative Trait Loci (QTL) Associated with Plant Freezing Tolerance and Cold Acclimation. Methods Mol Biol 2021. [PMID: 32607976 DOI: 10.1007/978-1-0716-0660-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Most agronomic traits are determined by quantitative trait loci (QTL) and exhibit continuous distribution in natural or especially built segregating populations. The genetic architecture and the hereditary characteristics of these traits are much more complicated than those of oligogenic traits and need adapted strategies for deciphering. The model plant Arabidopsis thaliana is widely studied for quantitative traits, especially via the utilization of genetic natural diversity. Here we describe a QTL-mapping protocol for analyzing freezing tolerance after cold acclimation in this species, based on its specific genetic tools. Nevertheless, this approach can be applied for the elucidation of complex traits in others species.
Collapse
|
8
|
Schneider K, Abazaj L, Niemann C, Schröder L, Nägele T. Cold acclimation has a differential effect on leaf vascular bundle structure and carbon export rates in natural Arabidopsis accessions originating from southern and northern Europe. PLANT DIRECT 2020; 4:e00251. [PMID: 32789285 PMCID: PMC7416751 DOI: 10.1002/pld3.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Acclimation to low but non-freezing temperature represents an ecologically important process for Arabidopsis thaliana but also for many other plant species from temperate regions. Cold acclimation comprises and affects numerous molecular and physiological processes and the maintenance of sugar supply of sink tissue by photosynthetically active source tissue is essential for plant survival. Here, changes in vascular bundle (VB) structure at the leaf petiole were analysed together with sucrose exudation rates before and after cold acclimation. Six natural Arabidopsis accessions originating from southern and northern Europe were compared. Photosynthetic efficiency, that is, maximum and effective quantum yield of photosystem II, revealed a significant effect of environmental condition. Only for northern accessions was a highly significant negative correlation observed between leaf sucrose exudation rates, xylem, and petiole cross-sectional areas. Furthermore, only for northern accessions was a significant increase of VB and leaf petiole cross-sectional area observed during cold acclimation. In contrast, variance of cross-sectional areas of cold acclimated southern accessions was strongly reduced compared to control plants, while mean areas remained similar under both conditions. In summary, these findings suggest that natural Arabidopsis accessions from northern Europe significantly adjust sink strength and leaf VB structure to maintain plant growth and photosynthesis under low temperature.
Collapse
Affiliation(s)
- Katja Schneider
- Department Biology IPlant DevelopmentLMU MünchenPlanegg‐MartinsriedGermany
| | - Lorena Abazaj
- Department Biology IPlant Evolutionary Cell BiologyLMU MünchenPlanegg‐MartinsriedGermany
| | - Cornelia Niemann
- Department Biology IPlant DevelopmentLMU MünchenPlanegg‐MartinsriedGermany
| | - Laura Schröder
- Department Biology IPlant Evolutionary Cell BiologyLMU MünchenPlanegg‐MartinsriedGermany
| | - Thomas Nägele
- Department Biology IPlant Evolutionary Cell BiologyLMU MünchenPlanegg‐MartinsriedGermany
| |
Collapse
|
9
|
Indications for a Central Role of Hexokinase Activity in Natural Variation of Heat Acclimation in Arabidopsis thaliana. PLANTS 2020; 9:plants9070819. [PMID: 32610673 PMCID: PMC7411702 DOI: 10.3390/plants9070819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/06/2023]
Abstract
Diurnal and seasonal changes of abiotic environmental factors shape plant performance and distribution. Changes of growth temperature and light intensity may vary significantly on a diurnal, but also on a weekly or seasonal scale. Hence, acclimation to a changing temperature and light regime is essential for plant survival and propagation. In the present study, we analyzed photosynthetic CO2 assimilation and metabolic regulation of the central carbohydrate metabolism in two natural accessions of Arabidopsis thaliana that originate from north western Russia and south Italy during exposure to heat and a combination of heat and high light. Our findings indicate that it is hardly possible to predict photosynthetic capacities under combined stress from single stress experiments. Further, capacities of hexose phosphorylation were found to be significantly lower in the Italian than in the Russian accession, which could explain an inverted sucrose-to-hexose ratio. Together with the finding of significantly stronger accumulation of anthocyanins under heat/high light, these observations indicate a central role of hexokinase activity in the stabilization of photosynthesis and carbohydrate metabolism during environmental changes.
Collapse
|
10
|
Sanderson BJ, Park S, Jameel MI, Kraft JC, Thomashow MF, Schemske DW, Oakley CG. Genetic and physiological mechanisms of freezing tolerance in locally adapted populations of a winter annual. AMERICAN JOURNAL OF BOTANY 2020; 107:250-261. [PMID: 31762012 PMCID: PMC7065183 DOI: 10.1002/ajb2.1385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/14/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Despite myriad examples of local adaptation, the phenotypes and genetic variants underlying such adaptive differentiation are seldom known. Recent work on freezing tolerance and local adaptation in ecotypes of Arabidopsis thaliana from Italy and Sweden provides an essential foundation for uncovering the genotype-phenotype-fitness map for an adaptive response to a key environmental stress. METHODS We examined the consequences of a naturally occurring loss-of-function (LOF) mutation in an Italian allele of the gene that encodes the transcription factor CBF2, which underlies a major freezing-tolerance locus. We used four lines with a Swedish genetic background, each containing a LOF CBF2 allele. Two lines had introgression segments containing the Italian CBF2 allele, and two contained deletions created using CRISPR-Cas9. We used a growth chamber experiment to quantify freezing tolerance and gene expression before and after cold acclimation. RESULTS Freezing tolerance was lower in the Italian (11%) compared to the Swedish (72%) ecotype, and all four experimental CBF2 LOF lines had reduced freezing tolerance compared to the Swedish ecotype. Differential expression analyses identified 10 genes for which all CBF2 LOF lines, and the IT ecotype had similar patterns of reduced cold responsive expression compared to the SW ecotype. CONCLUSIONS We identified 10 genes that are at least partially regulated by CBF2 that may contribute to the differences in cold-acclimated freezing tolerance between the Italian and Swedish ecotypes. These results provide novel insight into the molecular and physiological mechanisms connecting a naturally occurring sequence polymorphism to an adaptive response to freezing conditions.
Collapse
Affiliation(s)
- Brian J. Sanderson
- Department of Botany and Plant Pathology and the Purdue Center for Plant BiologyPurdue UniversityWest LafayetteINUSA
| | - Sunchung Park
- MSU‐DOE Plant Research Laboratory and the Plant Resilience InstituteMichigan State UniversityEast LansingMIUSA
- Present address:
USDA ARS SalinasCAUSA
| | - M. Inam Jameel
- Department of Botany and Plant Pathology and the Purdue Center for Plant BiologyPurdue UniversityWest LafayetteINUSA
- Present address:
Department of GeneticsUniversity of GeorgiaAthensGAUSA
| | - Joshua C. Kraft
- Department of Botany and Plant Pathology and the Purdue Center for Plant BiologyPurdue UniversityWest LafayetteINUSA
| | - Michael F. Thomashow
- MSU‐DOE Plant Research Laboratory and the Plant Resilience InstituteMichigan State UniversityEast LansingMIUSA
| | - Douglas W. Schemske
- Department of Plant Biology, and W. K. Kellogg Biological StationMichigan State UniversityEast LansingMIUSA
| | - Christopher G. Oakley
- Department of Botany and Plant Pathology and the Purdue Center for Plant BiologyPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
11
|
Fürtauer L, Weiszmann J, Weckwerth W, Nägele T. Dynamics of Plant Metabolism during Cold Acclimation. Int J Mol Sci 2019; 20:E5411. [PMID: 31671650 PMCID: PMC6862541 DOI: 10.3390/ijms20215411] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
Plants have evolved strategies to tightly regulate metabolism during acclimation to a changing environment. Low temperature significantly constrains distribution, growth and yield of many temperate plant species. Exposing plants to low but non-freezing temperature induces a multigenic processes termed cold acclimation, which eventually results in an increased freezing tolerance. Cold acclimation comprises reprogramming of the transcriptome, proteome and metabolome and affects communication and signaling between subcellular organelles. Carbohydrates play a central role in this metabolic reprogramming. This review summarizes current knowledge about the role of carbohydrate metabolism in plant cold acclimation with a focus on subcellular metabolic reprogramming, its thermodynamic constraints under low temperature and mathematical modelling of metabolism.
Collapse
Affiliation(s)
- Lisa Fürtauer
- Plant Evolutionary Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Bavaria, Germany.
| | - Jakob Weiszmann
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria.
- Vienna Metabolomics Center, University of Vienna, Vienna 1090, Austria.
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria.
- Vienna Metabolomics Center, University of Vienna, Vienna 1090, Austria.
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Bavaria, Germany.
| |
Collapse
|
12
|
Begara-Morales JC, Sánchez-Calvo B, Gómez-Rodríguez MV, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Corpas FJ, Barroso JB. Short-Term Low Temperature Induces Nitro-Oxidative Stress that Deregulates the NADP-Malic Enzyme Function by Tyrosine Nitration in Arabidopsis thaliana. Antioxidants (Basel) 2019; 8:antiox8100448. [PMID: 31581524 PMCID: PMC6827146 DOI: 10.3390/antiox8100448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Low temperature (LT) negatively affects plant growth and development via the alteration of the metabolism of reactive oxygen and nitrogen species (ROS and RNS). Among RNS, tyrosine nitration, the addition of an NO2 group to a tyrosine residue, can modulate reduced nicotinamide-dinucleotide phosphate (NADPH)-generating systems and, therefore, can alter the levels of NADPH, a key cofactor in cellular redox homeostasis. NADPH also acts as an indispensable electron donor within a wide range of enzymatic reactions, biosynthetic pathways, and detoxification processes, which could affect plant viability. To extend our knowledge about the regulation of this key cofactor by this nitric oxide (NO)-related post-translational modification, we analyzed the effect of tyrosine nitration on another NADPH-generating enzyme, the NADP-malic enzyme (NADP-ME), under LT stress. In Arabidopsis thaliana seedlings exposed to short-term LT (4 °C for 48 h), a 50% growth reduction accompanied by an increase in the content of superoxide, nitric oxide, and peroxynitrite, in addition to diminished cytosolic NADP-ME activity, were found. In vitro assays confirmed that peroxynitrite inhibits cytosolic NADP-ME2 activity due to tyrosine nitration. The mass spectrometric analysis of nitrated NADP-ME2 enabled us to determine that Tyr-73 was exclusively nitrated to 3-nitrotyrosine by peroxynitrite. The in silico analysis of the Arabidopsis NADP-ME2 protein sequence suggests that Tyr73 nitration could disrupt the interactions between the specific amino acids responsible for protein structure stability. In conclusion, the present data show that short-term LT stress affects the metabolism of ROS and RNS, which appears to negatively modulate the activity of cytosolic NADP-ME through the tyrosine nitration process.
Collapse
Affiliation(s)
- Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - María V Gómez-Rodríguez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Javier López-Jaramillo
- Institute of Biotechnology, Department of Organic Chemistry, Faculty of Sciences, University of Granada, E-18071 Granada, Spain.
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals, and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, E-18080 Granada, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| |
Collapse
|