1
|
El-Saadony MT, Saad AM, Mohammed DM, Fahmy MA, Elesawi IE, Ahmed AE, Algopishi UB, Elrys AS, Desoky ESM, Mosa WF, Abd El-Mageed TA, Alhashmi FI, Mathew BT, AbuQamar SF, El-Tarabily KA. Drought-tolerant plant growth-promoting rhizobacteria alleviate drought stress and enhance soil health for sustainable agriculture: A comprehensive review. PLANT STRESS 2024; 14:100632. [DOI: 10.1016/j.stress.2024.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
2
|
Kumar D, Ali M, Sharma N, Sharma R, Manhas RK, Ohri P. Unboxing PGPR-mediated management of abiotic stress and environmental cleanup: what lies inside? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47423-47460. [PMID: 38992305 DOI: 10.1007/s11356-024-34157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Abiotic stresses including heavy metal toxicity, drought, salt and temperature extremes disrupt the plant growth and development and lowers crop output. Presence of environmental pollutants further causes plants suffering and restrict their ability to thrive. Overuse of chemical fertilizers to reduce the negative impact of these stresses is deteriorating the environment and induces various secondary stresses to plants. Therefore, an environmentally friendly strategy like utilizing plant growth-promoting rhizobacteria (PGPR) is a promising way to lessen the negative effects of stressors and to boost plant growth in stressful conditions. These are naturally occurring inhabitants of various environments, an essential component of the natural ecosystem and have remarkable abilities to promote plant growth. Furthermore, multifarious role of PGPR has recently been widely exploited to restore natural soil against a range of contaminants and to mitigate abiotic stress. For instance, PGPR may mitigate metal phytotoxicity by boosting metal translocation inside the plant and changing the metal bioavailability in the soil. PGPR have been also reported to mitigate other abiotic stress and to degrade environmental contaminants remarkably. Nevertheless, despite the substantial quantity of information that has been produced in the meantime, there has not been much advancement in either the knowledge of the processes behind the alleged positive benefits or in effective yield improvements by PGPR inoculation. This review focuses on addressing the progress accomplished in understanding various mechanisms behind the protective benefits of PGPR against a variety of abiotic stressors and in environmental cleanups and identifying the cause of the restricted applicability in real-world.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Mohd Ali
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Roohi Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Rajesh Kumari Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
3
|
Arshad MJ, Khan MI, Ali MH, Farooq Q, Hussain MI, Seleiman MF, Asghar MA. Enhanced wheat productivity in saline soil through the combined application of poultry manure and beneficial microbes. BMC PLANT BIOLOGY 2024; 24:423. [PMID: 38760709 PMCID: PMC11102207 DOI: 10.1186/s12870-024-05137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Soil salinity is one of the major menaces to food security, particularly in dealing with the food demand of the ever-increasing global population. Production of cereal crops such as wheat is severely affected by soil salinity and improper fertilization. The present study aimed to examine the effect of selected microbes and poultry manure (PM) on seedling emergence, physiology, nutrient uptake, and growth of wheat in saline soil. A pot experiment was carried out in research area of Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan. Saline soil (12 dS m- 1 w/w) was developed by spiking using sodium chloride, and used in experiment along with two microbial strains (i.e., Alcaligenes faecalis MH-2 and Achromobacter denitrificans MH-6) and PM. Finally, wheat seeds (variety Akbar-2019) were sown in amended and unamended soil, and pots were placed following a completely randomized design. The wheat crop was harvested after 140 days of sowing. RESULTS The results showed a 10-39% increase (compared to non-saline control) in agronomic, physiological, and nutritive attributes of wheat plants when augmented with PM and microbes. Microbes together with PM significantly enhanced seedling emergence (up to 38%), agronomic (up to 36%), and physiological (up to 33%) in saline soil as compared to their respective unamended control. Moreover, the co-use of microbes and PM also improved soil's physicochemical attributes and enhanced N (i.e., 21.7%-17.1%), P (i.e., 24.1-29.3%), and K (i.e., 28.7%-25.3%) availability to the plant (roots and shoots, respectively). Similarly, the co-use of amendments also lowered the Na+ contents in soil (i.e., up to 62%) as compared to unamended saline control. This is the first study reporting the effects of the co-addition of newly identified salt-tolerant bacterial strains and PM on seedling emergence, physiology, nutrient uptake, and growth of wheat in highly saline soil. CONCLUSION Our findings suggest that co-using a multi-trait bacterial culture and PM could be an appropriate option for sustainable crop production in salt-affected soil.
Collapse
Affiliation(s)
- Muhammad Junaid Arshad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Imran Khan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
- Department of Isotope Biogeochemistry, Helmholtz- Center for Environmental Research- UFZ, Leipzig, Germany.
| | - Muhammad Hayder Ali
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Qammar Farooq
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | | | - Mahmoud F Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Muhammad Ahsan Asghar
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunzvik St, Martonvásár, 2462, Hungary
| |
Collapse
|
4
|
Abbasi S. Plant-microbe interactions ameliorate phosphate-mediated responses in the rhizosphere: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1074279. [PMID: 37360699 PMCID: PMC10290171 DOI: 10.3389/fpls.2023.1074279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
Phosphorus (P) is one of the essential minerals for many biochemical and physiological responses in all biota, especially in plants. P deficiency negatively affects plant performance such as root growth and metabolism and plant yield. Mutualistic interactions with the rhizosphere microbiome can assist plants in accessing the available P in soil and its uptake. Here, we provide a comprehensive overview of plant-microbe interactions that facilitate P uptake by the plant. We focus on the role of soil biodiversity in improved P uptake by the plant, especially under drought conditions. P-dependent responses are regulated by phosphate starvation response (PSR). PSR not only modulates the plant responses to P deficiency in abiotic stresses but also activates valuable soil microbes which provide accessible P. The drought-tolerant P-solubilizing bacteria are appropriate for P mobilization, which would be an eco-friendly manner to promote plant growth and tolerance, especially in extreme environments. This review summarizes plant-microbe interactions that improve P uptake by the plant and brings important insights into the ways to improve P cycling in arid and semi-arid ecosystems.
Collapse
|
5
|
Shaffique S, Imran M, Kang SM, Khan MA, Asaf S, Kim WC, Lee IJ. Seed Bio-priming of wheat with a novel bacterial strain to modulate drought stress in Daegu, South Korea. FRONTIERS IN PLANT SCIENCE 2023; 14:1118941. [PMID: 37180396 PMCID: PMC10173886 DOI: 10.3389/fpls.2023.1118941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 05/16/2023]
Abstract
Wheat is one of the major cereal crop grown food worldwide and, therefore, plays has a key role in alleviating the global hunger crisis. The effects of drought stress can reduces crop yields by up to 50% globally. The use of drought-tolerant bacteria for biopriming can improve crop yields by countering the negative effects of drought stress on crop plants. Seed biopriming can reinforce the cellular defense responses to stresses via the stress memory mechanism, that its activates the antioxidant system and induces phytohormone production. In the present study, bacterial strains were isolated from rhizospheric soil taken from around the Artemisia plant at Pohang Beach, located near Daegu, in the South Korea Republic of Korea. Seventy-three isolates were screened for their growth-promoting attributes and biochemical characteristics. Among them, the bacterial strain SH-8 was selected preferred based on its plant growth-promoting bacterial traits, which are as follows: abscisic acid (ABA) concentration = 1.08 ± 0.05 ng/mL, phosphate-solubilizing index = 4.14 ± 0.30, and sucrose production = 0.61 ± 0.13 mg/mL. The novel strain SH-8 demonstrated high tolerance oxidative stress. The antioxidant analysis also showed that SH-8 contained significantly higher levels of catalase (CAT), superoxide dismutase (SOD), and ascorbic peroxidase (APX). The present study also quantified and determined the effects of biopriming wheat (Triticum aestivum) seeds with the novel strain SH-8. SH-8 was highly effective in enhancing the drought tolerance of bioprimed seeds; their drought tolerance and germination potential (GP) were increased by up to 20% and 60%, respectively, compared with those in the control group. The lowest level of impact caused by drought stress and the highest germination potential, seed vigor index (SVI), and germination energy (GE) (90%, 2160, and 80%, respectively), were recorded for seeds bioprimed with with SH-8. These results show that SH-8 enhances drought stress tolerance by up to 20%. Our study suggests that the novel rhizospheric bacterium SH-8 (gene accession number OM535901) is a valuable biostimulant that improves drought stress tolerance in wheat plants and has the potential to be used as a biofertilizer under drought conditions.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Won-Chan Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- *Correspondence: Won-Chan Kim, ; In-Jung Lee,
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- *Correspondence: Won-Chan Kim, ; In-Jung Lee,
| |
Collapse
|
6
|
Cruz C, Cardoso P, Santos J, Matos D, Figueira E. Bioprospecting Soil Bacteria from Arid Zones to Increase Plant Tolerance to Drought: Growth and Biochemical Status of Maize Inoculated with Plant Growth-Promoting Bacteria Isolated from Sal Island, Cape Verde. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212912. [PMID: 36365367 PMCID: PMC9656834 DOI: 10.3390/plants11212912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 05/14/2023]
Abstract
Climate change and anthropogenic activities are responsible for extensive crop yield losses, with negative impact on global agricultural production. The occurrence of extreme weather events such as drought is a big challenge for agriculture, negatively impacting crops. Thus, methodologies reducing crop dependence on water will be a great advantage. Plant roots are colonized by soil bacteria, that can establish beneficial associations with plants, increasing crop productivity and plant tolerance to abiotic stresses. The aim of this study was to promote plant growth and to increase crop tolerance to drought by inoculation with osmotolerant bacterial strains. For that, bacteria were isolated from plants growing in Sal Island (Cape Verde) and identified. The osmotolerance and plant-growth promotion (PGP) abilities of the strains were determined. A maize seed cultivar tolerant to drought was inoculated with the strains evidencing best PGP capacity and osmo-tolerance. Results evidenced the ability of some bacterial strains increasing the development and inducing osmotolerance in plants. These results evidence the potential of osmotolerant bacteria to further increase the level of tolerance of maize varieties tolerant to drought, decreasing the dependence of this crop on irrigation, and open new perspectives to growth maize in drought affected areas and to use water more efficiently.
Collapse
Affiliation(s)
- Catarina Cruz
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Centre for Environmental and Marine Studies, Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jacinta Santos
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Matos
- Centre for Environmental and Marine Studies, Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies, Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
7
|
Zuo YL, Hu QN, Qin L, Liu JQ, He XL. Species identity and combinations differ in their overall benefits to Astragalus adsurgens plants inoculated with single or multiple endophytic fungi under drought conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:933738. [PMID: 36160950 PMCID: PMC9490189 DOI: 10.3389/fpls.2022.933738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Although desert plants often establish multiple simultaneous symbiotic associations with various endophytic fungi in their roots, most studies focus on single fungus inoculation. Therefore, combined inoculation of multiple fungi should be applied to simulate natural habitats with the presence of a local microbiome. Here, a pot experiment was conducted to test the synergistic effects between three extremely arid habitat-adapted root endophytes (Alternaria chlamydospora, Sarocladium kiliense, and Monosporascus sp.). For that, we compared the effects of single fungus vs. combined fungi inoculation, on plant morphology and rhizospheric soil microhabitat of desert plant Astragalus adsurgens grown under drought and non-sterile soil conditions. The results indicated that fungal inoculation mainly influenced root biomass of A. adsurgens, but did not affect the shoot biomass. Both single fungus and combined inoculation decreased plant height (7-17%), but increased stem branching numbers (13-34%). However, fungal inoculation influenced the root length and surface area depending on their species and combinations, with the greatest benefits occurring on S. kiliense inoculation alone and its co-inoculation with Monosporascus sp. (109% and 61%; 54% and 42%). Although A. chlamydospora and co-inoculations with S. kiliense and Monosporascus sp. also appeared to promote root growth, these inoculations resulted in obvious soil acidification. Despite no observed root growth promotion, Monosporascus sp. associated with its combined inoculations maximally facilitated soil organic carbon accumulation. However, noticeably, combined inoculation of the three species had no significant effects on root length, surface area, and biomass, but promoted rhizospheric fungal diversity and abundance most, with Sordariomycetes being the dominant fungal group. This indicates the response of plant growth to fungal inoculation may be different from that of the rhizospheric fungal community. Structural equation modeling also demonstrated that fungal inoculation significantly influenced the interactions among the growth of A. adsurgens, soil factors, and rhizospheric fungal groups. Our findings suggest that, based on species-specific and combinatorial effects, endophytic fungi enhanced the plant root growth, altered soil nutrients, and facilitated rhizospheric fungal community, possibly contributing to desert plant performance and ecological adaptability. These results will provide the basis for evaluating the potential application of fungal inoculants for developing sustainable management for desert ecosystems.
Collapse
Affiliation(s)
- Yi-Ling Zuo
- School of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Qian-Nan Hu
- School of Life Sciences, Hebei University, Baoding, China
| | - Le Qin
- School of Life Sciences, Hebei University, Baoding, China
| | - Jia-Qiang Liu
- School of Life Sciences, Hebei University, Baoding, China
| | - Xue-Li He
- School of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| |
Collapse
|
8
|
Qi M, Berry JC, Veley KW, O'Connor L, Finkel OM, Salas-González I, Kuhs M, Jupe J, Holcomb E, Glavina Del Rio T, Creech C, Liu P, Tringe SG, Dangl JL, Schachtman DP, Bart RS. Identification of beneficial and detrimental bacteria impacting sorghum responses to drought using multi-scale and multi-system microbiome comparisons. THE ISME JOURNAL 2022; 16:1957-1969. [PMID: 35523959 PMCID: PMC9296637 DOI: 10.1038/s41396-022-01245-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022]
Abstract
Drought is a major abiotic stress limiting agricultural productivity. Previous field-level experiments have demonstrated that drought decreases microbiome diversity in the root and rhizosphere. How these changes ultimately affect plant health remains elusive. Toward this end, we combined reductionist, transitional and ecological approaches, applied to the staple cereal crop sorghum to identify key root-associated microbes that robustly affect drought-stressed plant phenotypes. Fifty-three Arabidopsis-associated bacteria were applied to sorghum seeds and their effect on root growth was monitored. Two Arthrobacter strains caused root growth inhibition (RGI) in Arabidopsis and sorghum. In the context of synthetic communities, Variovorax strains were able to protect plants from Arthrobacter-caused RGI. As a transitional system, high-throughput phenotyping was used to test the synthetic communities. During drought stress, plants colonized by Arthrobacter had reduced growth and leaf water content. Plants colonized by both Arthrobacter and Variovorax performed as well or better than control plants. In parallel, we performed a field trial wherein sorghum was evaluated across drought conditions. By incorporating data on soil properties into the microbiome analysis, we accounted for experimental noise with a novel method and were able to observe the negative correlation between the abundance of Arthrobacter and plant growth. Having validated this approach, we cross-referenced datasets from the high-throughput phenotyping and field experiments and report a list of bacteria with high confidence that positively associated with plant growth under drought stress. In conclusion, a three-tiered experimental system successfully spanned the lab-to-field gap and identified beneficial and deleterious bacterial strains for sorghum under drought.
Collapse
Affiliation(s)
- Mingsheng Qi
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | - Kira W Veley
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Lily O'Connor
- Donald Danforth Plant Science Center, St. Louis, MO, USA.,Washington University, St. Louis, MO, USA
| | - Omri M Finkel
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Plant and Environmental Sciences, Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isai Salas-González
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Molly Kuhs
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Julietta Jupe
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Emily Holcomb
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | - Cody Creech
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Susannah G Tringe
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel P Schachtman
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA.,Center for Plant Science Innovation, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Rebecca S Bart
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
| |
Collapse
|
9
|
Hoseini A, Salehi A, Sayyed RZ, Balouchi H, Moradi A, Piri R, Fazeli-Nasab B, Poczai P, Ansari MJ, Obaid SA, Datta R. Efficacy of biological agents and fillers seed coating in improving drought stress in anise. FRONTIERS IN PLANT SCIENCE 2022; 13:955512. [PMID: 35937352 PMCID: PMC9355580 DOI: 10.3389/fpls.2022.955512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 06/12/2023]
Abstract
Many plants, including anise, have tiny, non-uniform seeds with low and light nutrient reserves. The seeds also show a weak establishment, especially under stressful conditions where their accurate planting in the soil and optimal yield are tough. This study sought to improve anise seeds' physical and physiological characteristics under drought stress. To this end, two factorial experiments under laboratory and greenhouse conditions were performed in a completely randomized design with 4 and 3 replications, respectively. Five levels of seed inoculation (inoculation with T36 and T43 of Trichoderma harzianum, and CHA0 and B52 of Pseudomonas fluorescent, and non-inoculation which means that control seeds were not treated with microbial inoculant), three levels of coating (K10P20, K10P10V5, and non-coating), and three levels of drought stress (0, -3, and -6 bars) were considered as the factorial experiment [vermiculite (V), kaolin (K), and perlite (P) numbers refer to the amount of material used in grams]. The laboratory experiment revealed that the combined treatments of bio-agents with coating increased the physical and germination characteristics of anise seeds compared to the control treatment. The greenhouse experiment showed that drought stress reduced the initial growth indices. Still, the combination treatments of biological agents and coating (fillers) could alleviate the destructive effects of drought stress to some extent and improve these indices. The best treatment was provided by T36 and K10P20 in both experiments, which significantly increased morphological indices.
Collapse
Affiliation(s)
- Atefeh Hoseini
- Department of Agronomy and Plant Breeding, Yasouj University, Yasouj, Iran
| | - Amin Salehi
- Department of Agronomy and Plant Breeding, Yasouj University, Yasouj, Iran
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science, and STKV Sangh Commerce College, Shahada, India
| | - Hamidreza Balouchi
- Department of Agronomy and Plant Breeding, Yasouj University, Yasouj, Iran
| | - Ali Moradi
- Department of Agronomy and Plant Breeding, Yasouj University, Yasouj, Iran
| | - Ramin Piri
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Tehran, Iran
| | - Bahman Fazeli-Nasab
- Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, (Mahatma Jyotiba Phule Rohilkhand University, Bareilly), Moradabad, India
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rahul Datta
- Department of Geology and Pedology, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
10
|
Jabborova D, Annapurna K, Azimov A, Tyagi S, Pengani KR, Sharma P, Vikram KV, Poczai P, Nasif O, Ansari MJ, Sayyed RZ. Co-inoculation of biochar and arbuscular mycorrhizae for growth promotion and nutrient fortification in soybean under drought conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:947547. [PMID: 35937362 PMCID: PMC9355629 DOI: 10.3389/fpls.2022.947547] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/30/2022] [Indexed: 05/23/2023]
Abstract
Drought is significant abiotic stress that affects the development and yield of many crops. The present study is to investigate the effect of arbuscular mycorrhizal fungi (AMF) and biochar on root morphological traits, growth, and physiological traits in soybean under water stress. Impact of AMF and biochar on development and root morphological traits in soybean and AMF spores number and the soil enzymes' activities were studied under drought conditions. After 40 days, plant growth parameters were measured. Drought stress negatively affected soybean growth, root parameters, physiological traits, microbial biomass, and soil enzyme activities. Biochar and AMF individually increase significantly plant growth (plant height, root dry weight, and nodule number), root parameters such as root diameter, root surface area, total root length, root volume, and projected area, total chlorophyll content, and nitrogen content in soybean over to control in water stress. In drought conditions, dual applications of AMF and biochar significantly enhanced shoot and root growth parameters, total chlorophyll, and nitrogen contents in soybean than control. Combined with biochar and AMF positively affects AMF spores number, microbial biomass, and soil enzyme activities in water stress conditions. In drought stress, dual applications of biochar and AMF increase microbial biomass by 28.3%, AMF spores number by 52.0%, alkaline phosphomonoesterase by 45.9%, dehydrogenase by 46.5%, and fluorescein diacetate by 52.2%, activities. The combined application of biochar and AMF enhance growth, root parameters in soybean and soil enzyme activities, and water stress tolerance. Dual applications with biochar and AMF benefit soybean cultivation under water stress conditions.
Collapse
Affiliation(s)
- Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kannepalli Annapurna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - A. Azimov
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Swati Tyagi
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Prakriti Sharma
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K. V. Vikram
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, Moradabad, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, India
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S. I. Patil Arts, G. B. Patel Science and S. T. K. V. Sangh Commerce College, Shahada, India
| |
Collapse
|
11
|
Kour D, Yadav AN. Bacterial Mitigation of Drought Stress in Plants: Current Perspectives and Future Challenges. Curr Microbiol 2022; 79:248. [PMID: 35834053 DOI: 10.1007/s00284-022-02939-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Climate change is emerging as a crucial issue with global attention and leading to abiotic stress conditions. There are different abiotic stress which affects the crop production among which drought is known to be most destructive stress affecting crop productivity and world's food security. Different approaches are under consideration to increase adaptability of the plants under drought stress with plant-microbe interactions being a greater area of focus. Stress-adaptive microbes either from the rhizosphere, internal tissue, or aerial parts of plants have been reported which through different mechanisms help the plants to cope up with drought and also promote their growth. These mechanisms include the accumulation of osmolytes, decrease in the inhibitory levels of ethylene by aminocyclopropane-1-carboxylate (ACC) deaminase enzyme, and furnishing the unavailable nutrients to plants. Microbial genera including Azotobacter, Bacillus, Ochrobactrum, Pseudomonas, and Serratia are known to be self-adaptive and growth promoters under drought stressed conditions. Stress-adaptive plant growth promoting (PGP) microbes thus are excellent candidates for stress alleviation in drought environment to provide maximum benefits to the plants. The present review deals with the effect of the drought stress on plants, biodiversity of the drought-adaptive microbes, mechanisms of the drought stress alleviation through enhancement of stress alleviators, reduction of the stress aggravators, and modification of the molecular pathways as well as the multiple PGP attributes of the drought-adaptive microbes.
Collapse
Affiliation(s)
- Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, India.
| |
Collapse
|
12
|
Balthazar C, Joly DL, Filion M. Exploiting Beneficial Pseudomonas spp. for Cannabis Production. Front Microbiol 2022; 12:833172. [PMID: 35095829 PMCID: PMC8795690 DOI: 10.3389/fmicb.2021.833172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Among the oldest domesticated crops, cannabis plants (Cannabis sativa L., marijuana and hemp) have been used to produce food, fiber, and drugs for thousands of years. With the ongoing legalization of cannabis in several jurisdictions worldwide, a new high-value market is emerging for the supply of marijuana and hemp products. This creates unprecedented challenges to achieve better yields and environmental sustainability, while lowering production costs. In this review, we discuss the opportunities and challenges pertaining to the use of beneficial Pseudomonas spp. bacteria as crop inoculants to improve productivity. The prevalence and diversity of naturally occurring Pseudomonas strains within the cannabis microbiome is overviewed, followed by their potential mechanisms involved in plant growth promotion and tolerance to abiotic and biotic stresses. Emphasis is placed on specific aspects relevant for hemp and marijuana crops in various production systems. Finally, factors likely to influence inoculant efficacy are provided, along with strategies to identify promising strains, overcome commercialization bottlenecks, and design adapted formulations. This work aims at supporting the development of the cannabis industry in a sustainable way, by exploiting the many beneficial attributes of Pseudomonas spp.
Collapse
Affiliation(s)
- Carole Balthazar
- Department of Biology, Faculty of Sciences, Université de Moncton, Moncton, NB, Canada
| | - David L. Joly
- Department of Biology, Faculty of Sciences, Université de Moncton, Moncton, NB, Canada
| | - Martin Filion
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| |
Collapse
|
13
|
Noorjahan A, Mahesh S, Aiyamperumal B, Anantharaman P. Exploring Marine Fungal Diversity and Their Applications in Agriculture. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Co-Inoculation of Bacillus spp. for Growth Promotion and Iron Fortification in Sorghum. SUSTAINABILITY 2021. [DOI: 10.3390/su132112091] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Seven Bacillus spp. isolated from the marine water and the rhizosphere of the medicinal plant Coscinium fenestratum were studied to produce plant growth promotion (PGP) traits invitro. Among the seven isolates, MMRH22 and RHPR20 produced copious amounts of PGP traits. Based on the 16S rRNA sequence, the two potent bacterial isolates, RHPR20 and MMRH22, were identified as Bacillus mojavensis and Bacillus cereus, respectively. A compatibility test between the isolates RHPR20 and MMRH22 revealed they are compatible and can be used as a consortium. Both isolates were evaluated for the plant growth promotion and the biofortification of sorghum under greenhouse conditions. Treatments included the application of MMRH22, RHPR20, their consortium (RHPR20 + MMRH22), and an uninoculated control. Inoculation with bacterial cultures resulted in a significant increase in the plant height; the number of leaves; the leaf area; the root, shoot, and leaf weight; and the yield of sorghum at 30 and 60 days after sowing (DAS). The scanning electron micrograph of the sorghum plant roots revealed extensive colonization in the plants treated with the bacterial cultures compared to the uninoculated control. The sorghum grains obtained after final harvest were analyzed for their nutrient content by ICP–OES. The biofortification in sorghum grains was varied and was found to enhance the iron content up to 97%. This study revealed that treatments with microbial consortia enhance plant growth, yield, and iron content, which could combat nutrient deficiencies in plants and humans.
Collapse
|
15
|
Pal K, Rakshit S, Mondal KC, Halder SK. Microbial decomposition of crustacean shell for production of bioactive metabolites and study of its fertilizing potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58915-58928. [PMID: 33660173 DOI: 10.1007/s11356-021-13109-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Crustacean shell waste disposal is considered as biggest problem in seafood processing centers. Incineration and landfilling are the commonest ways of disposal of the waste which causes environmental pollution. Microbial bio-conversion is one of the promising approaches to minimize the wastes by utilizing the same for deriving different value added metabolites. In this perspective, chitinase- and protease-producing bacterial strains were isolated from shrimp culture pond, and the potent isolate was subsequently identified as Alcaligenes faecalis SK10. Fermentative optimization of the production of chitinase (85.42 U/ml), protease (58.57 U/ml), and their catalytic products, viz., N-acetylamino sugar (84 μg/ml) and free amino acids (112 μg/ml), were carried out by utilizing shrimp and crab shell powder as principal substrate. The fermented hydrolysate (FH) was subsequently applied to evaluate its potential to be a candidate fertilizer for the growth of leguminous plant Pisum sativum and Cicer arietinum, and the results were compared with chitin, chitosan, and commercial biofertilizer amended group. The results revealed that FH have paramount potential to improve plants morpho-physiological parameters like stem and root length, chlorophyll, cellular RNA, protein content, and soil physico-chemical parameters like total nitrogen, magnesium, calcium, phosphorus, and potassium significantly (p < 0.05). Moreover, the application of FH also selectively encouraged the growth of free-living nitrogen-fixing bacteria, Rhizobium, phosphate-solubilizing bacteria in the soil by 4.82- and 5.27-, 5.57- and 4.71, and 7.64- and 6.92-fold, respectively, in the rhizosphere of P. sativum and C. arietinum, which collectively is a good sign for an ideal biofertilizer. Co-supplementation of FH with commercial PGPR-biofertilizer significantly influenced the morpho-physiological attributes of plant and physico-chemical and microbial attributes of soil. The study validated proficient and sustainable utilization of fermented hydrolysate of waste crustacean shell as biofertilizer.
Collapse
Affiliation(s)
- Kalyanbrata Pal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721 102, India
| | - Subham Rakshit
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721 102, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721 102, India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721 102, India.
| |
Collapse
|
16
|
Multifarious effect of ACC deaminase and EPS producing Pseudomonas sp. and Serratia marcescens to augment drought stress tolerance and nutrient status of wheat. World J Microbiol Biotechnol 2021; 37:198. [PMID: 34664131 DOI: 10.1007/s11274-021-03166-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Drought is the prime abiotic stress that rigorously influences plant growth, yield and quality of crops. The current investigation illustrated the bio-protective characters of Serratia marcescens and Pseudomonas sp. to ameliorate drought stress tolerance, plant growth and nutrient status of wheat. The present study aimed for search of potential drought tolerant plant growth-promoting rhizobacteria (PGPR). All screened bacterial isolates exhibited potential plant growth promoting (PGP) attributes such as production of ACC deaminase, exo-polysaccharide, siderophore, ammonia, IAA, and efficiently solubilized zinc and phosphate under in vitro conditions. To assess the in situ plant growth promotion potential of PGPR, a greenhouse experiment was conducted by priming wheat seeds with screened plant PGPR. Improved water status, reactive oxygen species, osmolyte accumulation, chlorophyll and carotenoids content in plant leaves confirmed the excellent drought tolerance conferring ability of RRN II 2 and RRC I 5. Among all PGPR, RRN II 2 and RRC I 5 inoculated plants not only demonstrated greater harvest index but also exhibited more micronutrient (zinc and iron) content in wheat grains. Further, RRN II 2 and RRC I 5 were identified through 16S rDNA sequencing as S. marcescens and Pseudomonas sp., respectively. Furthermore, amplification of acdS gene (Amplified band size of acdS gene was ~ 1.8 Kb) also confirmed ACC deaminase enzyme producing ability of Pseudomonas sp. Moreover, correlation coefficient, principal component analysis and cluster analysis also demonstrated that nutrient status and values of agronomical parameters of wheat primed with S. marcescens and Pseudomonas sp. were at par with the positive control. Thus, the outcome of this comparative investigation indicates that Pseudomonas sp. and S. marcescens could be utilized as bioinoculant in wheat since they can improve the physiological status, productivity and nutrient status in wheat crop under drought.
Collapse
|
17
|
Kajarekar KV, Parulekar Berde CV, Salvi SP, Berde VB. Alleviation of Diverse Abiotic Stress in Plants Through the Fungal Communities. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Singh U, Akhtar O, Mishra R, Zoomi I, Kehri HK, Pandey D. Arbuscular Mycorrhizal Fungi: Biodiversity, Interaction with Plants, and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Role of Useful Fungi in Agriculture Sustainability. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Abdel-Azeem AM, Abu-Elsaoud AM, Abo Nahas HH, Abdel-Azeem MA, Balbool BA, Mousa MK, Ali NH, Darwish AMG. Biodiversity and Industrial Applications of Genus Chaetomium. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Fungal Diversity and Ecology: Major Challenges for Crop Production in Present Climate Scenario. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Abed RM. Exploring Fungal Biodiversity of Genus Epicoccum and Their Biotechnological Potential. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Plant Growth-Promoting Rhizobacteria (PGPR): Current and Future Prospects for Crop Improvement. ENVIRONMENTAL AND MICROBIAL BIOTECHNOLOGY 2021. [DOI: 10.1007/978-981-15-6949-4_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Portraying Fungal Mechanisms in Stress Tolerance: Perspective for Sustainable Agriculture. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Abdel-Azeem AM, Abo Nahas HH, Abdel-Azeem MA, Tariq FJ, Yadav AN. Biodiversity and Ecological Perspective of Industrially Important Fungi An Introduction. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Plant Growth-Promoting Endophytic Fungi from Different Habitats and Their Potential Applications in Agriculture. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Desert Soil Microbes as a Mineral Nutrient Acquisition Tool for Chickpea ( Cicer arietinum L.) Productivity at Different Moisture Regimes. PLANTS 2020; 9:plants9121629. [PMID: 33255160 PMCID: PMC7760410 DOI: 10.3390/plants9121629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022]
Abstract
Drought is a major constraint in drylands for crop production. Plant associated microbes can help plants in acquisition of soil nutrients to enhance productivity in stressful conditions. The current study was designed to illuminate the effectiveness of desert rhizobacterial strains on growth and net-return of chickpeas grown in pots by using sandy loam soil of Thal Pakistan desert. A total of 125 rhizobacterial strains were isolated, out of which 72 strains were inoculated with chickpeas in the growth chamber for 75 days to screen most efficient isolates. Amongst all, six bacterial strains (two rhizobia and four plant growth promoting rhizobacterial strains) significantly enhanced nodulation and shoot-root length as compared to other treatments. These promising strains were morphologically and biochemically characterized and identified through 16sRNA sequencing. Then, eight consortia of the identified isolates were formulated to evaluate the growth and development of chickpea at three moisture levels (55%, 75% and 95% of field capacity) in a glass house experiment. The trend for best performing consortia in terms of growth and development of chickpea remained T2 at moisture level 1 > T7 at moisture level 2 > T4 at moisture level 3. The present study indicates the vital role of co-inoculated bacterial strains in growth enhancement of chickpea under low moisture availability. It is concluded from the results that the consortium T2 (Mesorhizobium ciceri RZ-11 + Bacillus subtilis RP-01 + Bacillus mojavensis RS-14) can perform best in drought conditions (55% field capacity) and T4 (Mesorhizobium ciceri RZ-11 + Enterobacter Cloacae RP-08 + Providencia vermicola RS-15) can be adopted in irrigated areas (95% field capacity) for maximum productivity of chickpea.
Collapse
|
28
|
Hesham AEL, Kaur T, Devi R, Kour D, Prasad S, Yadav N, Singh C, Singh J, Yadav AN. Current Trends in Microbial Biotechnology for Agricultural Sustainability: Conclusion and Future Challenges. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-981-15-6949-4_22] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Selvasekaran P, Chidambaram R. Agriculturally Important Fungi for Crop Protection. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Arbuscular Mycorrhizae Associations and Role in Mitigation of Drought Stress in Plants. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Tiwari P, Bajpai M, Singh LK, Mishra S, Yadav AN. Phytohormones Producing Fungal Communities: Metabolic Engineering for Abiotic Stress Tolerance in Crops. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN. Diversity, Plant Growth Promoting Attributes, and Agricultural Applications of Rhizospheric Microbes. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2020. [DOI: 10.1007/978-3-030-38453-1_1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Kumar A, Teja ES, Mathur V, Kumari R. Phosphate-Solubilizing Fungi: Current Perspective, Mechanisms and Potential Agricultural Applications. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Nouh FAA, Abo Nahas HH, Abdel-Azeem AM. Agriculturally Important Fungi: Plant–Microbe Association for Mutual Benefits. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Yadav AN, Kour D, Kaur T, Devi R, Yadav N. Agriculturally Important Fungi for Crop Productivity: Current Research and Future Challenges. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Abo Nouh FA, Abo Nahas HH, Abdel-Azeem AM. Piriformospora indica: Endophytic Fungus for Salt Stress Tolerance and Disease Resistance. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Abo Nouh FA, Abdel-Azeem AM. Role of Fungi in Adaptation of Agricultural Crops to Abiotic Stresses. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|