1
|
Vallejo-Arróliga M, Villalobos-Agüero RA, Zamora-Sanabria R, Karkashian-Córdoba J. Molecular analysis of 4/91-like variants of avian infectious bronchitis virus (IBV) obtained after the introduction of a 4/91 live-attenuated vaccine in Costa Rica during 2017. Virusdisease 2025; 36:81-92. [PMID: 40290772 PMCID: PMC12021757 DOI: 10.1007/s13337-025-00910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/18/2025] [Indexed: 04/30/2025] Open
Abstract
Avian infectious bronchitis virus (IBV) belongs to family Coronaviridae, genus Gammacoronavirus and is one of the most predominant causes of respiratory disease in poultry. Its high mutation rate constantly leads to the emergence of novel variants that complicate disease control. In 2016, a GA13-like IBV outbreak occurred in Costa Rica, prompting the introduction of the 4/91 live-attenuated vaccine. The objective of this research was to perform a molecular characterization of IBV variants circulating in the country six years after the introduction of the 4/91 vaccine. A total of 177 samples from symptomatic birds were analyzed, with 43 testing positive for IBV. Seven complete S1 sequences were obtained and clustered within the GI-13 lineage by phylogenetic analysis. Sequence analysis showed high genetic similarity to the 4/91 vaccine strain, with nucleotide and amino acid sequence identities over 99.13% and 97.96%, respectively, despite these samples being taken from unvaccinated birds. Post-translational modification analysis of the S1 protein revealed conserved N-glycosylation and palmitoylation sites, while two serine phosphorylation changes were predicted between the obtained sequences and the vaccine strain. Selective pressure analysis identified 10 sites under positive selection, mainly located within the receptor-binding domain and hypervariable regions of the S1 subunit. The presence of 4/91-like variants in unvaccinated birds needs attention, and its relation to observed pathology requires further research. Continuous surveillance is essential to monitor for potential vaccine escape mutants and mitigate their impact. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-025-00910-4.
Collapse
|
2
|
Bhuiyan MSA, Gupta SD, Silip JJ, Talukder S, Haque MH, Forwood JK, Sarker S. Current trends and future potential in the detection of avian coronaviruses: An emphasis on sensors-based technologies. Virology 2025; 604:110399. [PMID: 39884161 DOI: 10.1016/j.virol.2025.110399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/04/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Infectious bronchitis virus (IBV), an avian coronavirus, member of the genus Gammacoronavirus, poses significant threats to poultry health, causing severe respiratory, reproductive, and renal infections. The genetic diversity of IBV, driven by mutations, recombination and deletions, has led to the emergence of numerous serotypes and genotypes, complicating both diagnosis and control measures. Rapid and accurate diagnostic tools are essential for effective disease management and minimizing economic losses. Conventional diagnostic methods, such as PCR, virus isolation, and serological assays, are hindered by limitations in sensitivity, specificity, and turnaround time. In contrast, innovative biosensor platforms employing advanced detection mechanisms-including electrochemical, optical, and piezoelectric sensors-offer a transformative solution. These technologies provide portable, highly sensitive, and rapid diagnostic platforms for IBV detection. Beyond addressing the challenges of conventional methods, these biosensor-based approaches facilitate real-time monitoring and enhance disease surveillance. This review highlights the transformative potential of biosensors and their integration into diagnostic strategies for avian coronavirus infections, presenting them as a promising alternative for precise and efficient IBV detection.
Collapse
Affiliation(s)
- Md Safiul Alam Bhuiyan
- Faculty of Sustainable Agriculture, Livestock Production, University Malaysia Sabah, Sandakan, Sabah, Malaysia
| | - Suman Das Gupta
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health Charles Sturt University, Wagga Wagga, 2650, Australia; Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Juplikely James Silip
- Faculty of Sustainable Agriculture, Livestock Production, University Malaysia Sabah, Sandakan, Sabah, Malaysia
| | - Saranika Talukder
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - Md Hakimul Haque
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia; Rajshahi University, Faculty of Veterinary and Animal Sciences, Department of Veterinary and Animal Sciences, Rajshahi, 6205, Bangladesh
| | - Jade K Forwood
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Subir Sarker
- Biomedical Sciences and Molecular Biology, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
3
|
Mahmoud ME, Ali A, Farooq M, Isham IM, Suhail SM, Herath-Mudiyanselage H, Rahimi R, Abdul-Careem MF. Cyclooxygenase-2/prostaglandin E2 pathway orchestrates the replication of infectious bronchitis virus in chicken tracheal explants. Microbiol Spectr 2024; 12:e0040724. [PMID: 39472003 PMCID: PMC11619240 DOI: 10.1128/spectrum.00407-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/09/2024] [Indexed: 12/08/2024] Open
Abstract
In this study, we investigated the localized pathogenesis of infectious bronchitis virus (IBV) in chicken tracheal organ cultures (TOCs), focusing on the role of inducible cyclooxygenase (COX-2). Two divergent IBV strains, respiratory Connecticut (Conn) A5968 and nephropathogenic Delmarva (DMV)/1639, were studied at 6, 12, 24, and 48 hours post-infection (hpi). Various treatments including exogenous prostaglandin (PGE)2, a selective COX-2 antagonist (SC-236), and inhibitors of PGE2 receptors and Janus kinase (JAK) were administered. IBV genome load and antigen expression were quantified using real-time quantitative PCR and immunohistochemistry. COX-2, interferon (IFN)-α, IFN-β, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase (iNOS) expressions were measured, along with PGE2 and COX-2 concentrations. IBV genome load and protein expression peaked at 12 and 24 hpi, respectively. Conn A5968-infected TOCs exhibited continuous COX-2 expression for up to 24 hpi, extended PGE2 production up to 48 hpi, and reduced inflammatory cytokine expression. In contrast, DMV/1639-infected TOCs displayed heightened inflammatory cytokine expression, brief COX-2 expression, and PGE2 production. Treatment with IFN-γ, SC-236, PGE2 receptor inhibitors, or JAK inhibitors reduced IBV infection and lesion scores, whereas exogenous PGE2 or IFN-γ pretreatment with a JAK-2 inhibitor augmented infection. These findings shed light on the innate immune regulation of IBV infection in the trachea, highlighting the involvement of the COX-2/PGE2 pathway. IMPORTANCE Understanding the localized pathogenesis of infectious bronchitis virus (IBV) within the trachea of chickens is crucial for developing effective control strategies against this prevalent poultry pathogen. This study sheds light on the role of inducible cyclooxygenase (COX-2) and prostaglandin (PGE)2 in IBV pathogenesis using chicken tracheal organ culture (TOC) models. The findings reveal distinct patterns of COX-2 expression, PGE2 production, and immune responses associated with different IBV strains, highlighting the complexity of host-virus interactions. Furthermore, the identification of specific inhibitors targeting the COX-2/PGE2 pathway and Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway provides potential therapeutic avenues for mitigating IBV infection in poultry. Overall, this study contributes to our understanding of the innate immune regulation of IBV infection within the trachea, laying the groundwork for the development of targeted interventions to control IBV outbreaks in poultry populations.
Collapse
Affiliation(s)
- Motamed Elsayed Mahmoud
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Ahmed Ali
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Muhammad Farooq
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ishara M. Isham
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sufna M. Suhail
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Ryan Rahimi
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
4
|
Bhuiyan MSA, Amin Z, Rodrigues KF, Saallah S, Shaarani SM, Sarker S, Siddiquee S. Infectious Bronchitis Virus (Gammacoronavirus) in Poultry Farming: Vaccination, Immune Response and Measures for Mitigation. Vet Sci 2021; 8:273. [PMID: 34822646 PMCID: PMC8623603 DOI: 10.3390/vetsci8110273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious bronchitis virus (IBV) poses significant financial and biosecurity challenges to the commercial poultry farming industry. IBV is the causative agent of multi-systemic infection in the respiratory, reproductive and renal systems, which is similar to the symptoms of various viral and bacterial diseases reported in chickens. The avian immune system manifests the ability to respond to subsequent exposure with an antigen by stimulating mucosal, humoral and cell-mediated immunity. However, the immune response against IBV presents a dilemma due to the similarities between the different serotypes that infect poultry. Currently, the live attenuated and killed vaccines are applied for the control of IBV infection; however, the continual emergence of IB variants with rapidly evolving genetic variants increases the risk of outbreaks in intensive poultry farms. This review aims to focus on IBV challenge-infection, route and delivery of vaccines and vaccine-induced immune responses to IBV. Various commercial vaccines currently have been developed against IBV protection for accurate evaluation depending on the local situation. This review also highlights and updates the limitations in controlling IBV infection in poultry with issues pertaining to antiviral therapy and good biosecurity practices, which may aid in establishing good biorisk management protocols for its control and which will, in turn, result in a reduction in economic losses attributed to IBV infection.
Collapse
Affiliation(s)
- Md. Safiul Alam Bhuiyan
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Zarina Amin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Kenneth Francis Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Sharifudin Md. Shaarani
- Food Biotechnology Program, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Malaysia;
| | - Subir Sarker
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| |
Collapse
|
5
|
Parkhe P, Verma S. Evolution, Interspecies Transmission, and Zoonotic Significance of Animal Coronaviruses. Front Vet Sci 2021; 8:719834. [PMID: 34738021 PMCID: PMC8560429 DOI: 10.3389/fvets.2021.719834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Coronaviruses are single-stranded RNA viruses that affect humans and a wide variety of animal species, including livestock, wild animals, birds, and pets. These viruses have an affinity for different tissues, such as those of the respiratory and gastrointestinal tract of most mammals and birds and the hepatic and nervous tissues of rodents and porcine. As coronaviruses target different host cell receptors and show divergence in the sequences and motifs of their structural and accessory proteins, they are classified into groups, which may explain the evolutionary relationship between them. The interspecies transmission, zoonotic potential, and ability to mutate at a higher rate and emerge into variants of concern highlight their importance in the medical and veterinary fields. The contribution of various factors that result in their evolution will provide better insight and may help to understand the complexity of coronaviruses in the face of pandemics. In this review, important aspects of coronaviruses infecting livestock, birds, and pets, in particular, their structure and genome organization having a bearing on evolutionary and zoonotic outcomes, have been discussed.
Collapse
Affiliation(s)
| | - Subhash Verma
- Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| |
Collapse
|
6
|
Jara M, Crespo R, Roberts DL, Chapman A, Banda A, Machado G. Development of a Dissemination Platform for Spatiotemporal and Phylogenetic Analysis of Avian Infectious Bronchitis Virus. Front Vet Sci 2021; 8:624233. [PMID: 34017870 PMCID: PMC8129014 DOI: 10.3389/fvets.2021.624233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/27/2021] [Indexed: 11/13/2022] Open
Abstract
Infecting large portions of the global poultry populations, the avian infectious bronchitis virus (IBV) remains a major economic burden in North America. With more than 30 serotypes globally distributed, Arkansas, Connecticut, Delaware, Georgia, and Massachusetts are among the most predominant serotypes in the United States. Even though vaccination is widely used, the high mutation rate exhibited by IBV is continuously triggering the emergence of new viral strains and hindering control and prevention measures. For that reason, targeted strategies based on constantly updated information on the IBV circulation are necessary. Here, we sampled IBV-infected farms from one US state and collected and analyzed 65 genetic sequences coming from three different lineages along with the immunization information of each sampled farm. Phylodynamic analyses showed that IBV dispersal velocity was 12.3 km/year. The majority of IBV infections appeared to have derived from the introduction of the Arkansas DPI serotype, and the Arkansas DPI and Georgia 13 were the predominant serotypes. When analyzed against IBV sequences collected across the United States and deposited in the GenBank database, the most likely viral origin of our sequences was from the states of Alabama, Georgia, and Delaware. Information about vaccination showed that the MILDVAC-MASS+ARK vaccine was applied on 26% of the farms. Using a publicly accessible open-source tool for real-time interactive tracking of pathogen spread and evolution, we analyzed the spatiotemporal spread of IBV and developed an online reporting dashboard. Overall, our work demonstrates how the combination of genetic and spatial information could be used to track the spread and evolution of poultry diseases, providing timely information to the industry. Our results could allow producers and veterinarians to monitor in near-real time the current IBV strain circulating, making it more informative, for example, in vaccination-related decisions.
Collapse
Affiliation(s)
- Manuel Jara
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Rocio Crespo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - David L Roberts
- Department of Computer Science North Carolina State University, Raleigh, NC, United States
| | - Ashlyn Chapman
- Department of Computer Science North Carolina State University, Raleigh, NC, United States
| | - Alejandro Banda
- Poultry Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Pearl, MS, United States
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
7
|
Khamassi Khbou M, Daaloul Jedidi M, Bouaicha Zaafouri F, Benzarti M. Coronaviruses in farm animals: Epidemiology and public health implications. Vet Med Sci 2021; 7:322-347. [PMID: 32976707 PMCID: PMC7537542 DOI: 10.1002/vms3.359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses (CoVs) are documented in a wide range of animal species, including terrestrial and aquatic, domestic and wild. The geographic distribution of animal CoVs is worldwide and prevalences were reported in several countries across the five continents. The viruses are known to cause mainly gastrointestinal and respiratory diseases with different severity levels. In certain cases, CoV infections are responsible of huge economic losses associated or not to highly public health impact. Despite being enveloped, CoVs are relatively resistant pathogens in the environment. Coronaviruses are characterized by a high mutation and recombination rate, which makes host jumping and cross-species transmission easy. In fact, increasing contact between different animal species fosters cross-species transmission, while agriculture intensification, animal trade and herd management are key drivers at the human-animal interface. If contacts with wild animals are still limited, humans have much more contact with farm animals, during breeding, transport, slaughter and food process, making CoVs a persistent threat to both humans and animals. A global network should be established for the surveillance and monitoring of animal CoVs.
Collapse
Affiliation(s)
- Médiha Khamassi Khbou
- Laboratory of Infectious Animal Diseases, Zoonoses, and Sanitary RegulationUniv. Manouba. Ecole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - Monia Daaloul Jedidi
- Laboratory of Microbiology and ImmunologyUniv. ManoubaEcole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - Faten Bouaicha Zaafouri
- Department of Livestock Semiology and MedicineUniv. ManoubaEcole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - M’hammed Benzarti
- Laboratory of Infectious Animal Diseases, Zoonoses, and Sanitary RegulationUniv. Manouba. Ecole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| |
Collapse
|
8
|
Ghosh S, Malik YS. Drawing Comparisons between SARS-CoV-2 and the Animal Coronaviruses. Microorganisms 2020; 8:E1840. [PMID: 33238451 PMCID: PMC7700164 DOI: 10.3390/microorganisms8111840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/01/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
The COVID-19 pandemic, caused by a novel zoonotic coronavirus (CoV), SARS-CoV-2, has infected 46,182 million people, resulting in 1,197,026 deaths (as of 1 November 2020), with devastating and far-reaching impacts on economies and societies worldwide. The complex origin, extended human-to-human transmission, pathogenesis, host immune responses, and various clinical presentations of SARS-CoV-2 have presented serious challenges in understanding and combating the pandemic situation. Human CoVs gained attention only after the SARS-CoV outbreak of 2002-2003. On the other hand, animal CoVs have been studied extensively for many decades, providing a plethora of important information on their genetic diversity, transmission, tissue tropism and pathology, host immunity, and therapeutic and prophylactic strategies, some of which have striking resemblance to those seen with SARS-CoV-2. Moreover, the evolution of human CoVs, including SARS-CoV-2, is intermingled with those of animal CoVs. In this comprehensive review, attempts have been made to compare the current knowledge on evolution, transmission, pathogenesis, immunopathology, therapeutics, and prophylaxis of SARS-CoV-2 with those of various animal CoVs. Information on animal CoVs might enhance our understanding of SARS-CoV-2, and accordingly, benefit the development of effective control and prevention strategies against COVID-19.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 334, Saint Kitts and Nevis
| | - Yashpal S. Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana 141004, India;
| |
Collapse
|
9
|
Tilocca B, Britti D, Urbani A, Roncada P. Computational Immune Proteomics Approach to Target COVID-19. J Proteome Res 2020; 19:4233-4241. [PMID: 32914632 PMCID: PMC7640973 DOI: 10.1021/acs.jproteome.0c00553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 12/28/2022]
Abstract
Progress of the omics platforms widens their application to diverse fields, including immunology. This enables a deeper level of knowledge and the provision of a huge amount of data for which management and fruitful integration with the past evidence requires a steadily growing computational effort. In light of this, immunoinformatics emerges as a new discipline placed in between the traditional lab-based investigations and the computational analysis of the biological data. Immunoinformatics make use of tailored bioinformatics tools and data repositories to facilitate the analysis of data from a plurality of disciplines and help drive novel research hypotheses and in silico screening investigations in a fast, reliable, and cost-effective manner. Such computational immunoproteomics studies may as well prepare and guide lab-based investigations, representing valuable technology for the investigation of novel pathogens, to tentatively evaluate specificity of diagnostic products, to forecast on potential adverse effects of vaccines and to reduce the use of animal models. The present manuscript provides an overview of the COVID-19 pandemic and reviews the state of the art of the omics technologies employed in fighting SARS-CoV-2 infections. A comprehensive description of the immunoinformatics approaches and its potential role in contrasting COVID-19 pandemics is provided.
Collapse
Affiliation(s)
- Bruno Tilocca
- Department
of Health Sciences, University “Magna
Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Domenico Britti
- Department
of Health Sciences, University “Magna
Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Andrea Urbani
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Università Cattolica del
Sacro Cuore, Roma 00168, Italy
- Dipartimento
di Scienze di laboratorio e infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli, Roma 00168, Italy
| | - Paola Roncada
- Department
of Health Sciences, University “Magna
Graecia” of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|