1
|
Ahtasham Iqbal M, Akram S, Khalid S, Lal B, Hassan SU, Ashraf R, Kezembayeva G, Mushtaq M, Chinibayeva N, Hosseini-Bandegharaei A. Advanced photocatalysis as a viable and sustainable wastewater treatment process: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 253:118947. [PMID: 38744372 DOI: 10.1016/j.envres.2024.118947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/14/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
In our era, water pollution not only poses a serious threat to human, animal, and biotic life but also causes serious damage to infrastructure and the ecosystem. A set of physical, chemical, and biological technologies have been exploited to decontaminate and/or disinfect water pollutants, toxins, microbes, and contaminants, but none of these could be ranked as sustainable and scalable wastewater technology. The photocatalytic process can harmonize the sunlight to degrade certain toxins, chemicals, microbes, and antibiotics, present in water. For example, transition metal oxides (ZnO, SnO2, TiO2, etc.), when integrated into an organic framework of graphene or nitrides, can bring about more than 90% removal of dyes, microbial load, pesticides, and antibiotics. Similarly, a modified network of graphitic carbon nitride can completely decontaminate petrochemicals. The present review will primarily highlight the mechanistic aspects for the removal and/or degradation of highly concerned contaminants, factors affecting photocatalysis, engineering designs of photoreactors, and pros and cons of various wastewater treatment technologies already in practice. The photocatalytic reactor can be a more viable and sustainable wastewater treatment opportunity. We hope the researcher will find a handful of information regarding the advanced oxidation process accomplished via photocatalysis and the benefits associated with the photocatalytic-type degradation of water pollutants and contaminants.
Collapse
Affiliation(s)
| | - Sumia Akram
- Division of Science and Technology, University of Education Lahore, Pakistan
| | - Shahreen Khalid
- Department of Chemistry, Government College University Lahore, Pakistan
| | - Basant Lal
- Department of Chemistry, Institute of Applied Science and Humanities, GLA University, Mathura, 281406, India
| | - Sohaib Ul Hassan
- Department of Irrigation & Drainage, University of Agriculture, Faisalabad, Pakistan
| | - Rizwan Ashraf
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Gulmira Kezembayeva
- Mining and Metallurgical Institute Named After O.A. Baikonurov, Department Chemical Processes and Industrial Ecology, Satbayev University, Almaty, Kazakhstan
| | - Muhammad Mushtaq
- Department of Chemistry, Government College University Lahore, Pakistan.
| | | | - Ahmad Hosseini-Bandegharaei
- Faculty of Chemistry, Semnan University, Semnan, Iran; Centre of Research Impact and Outcome, Chitkara University, Rajpura-140417, Punjab, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai-602105, Tamil Nadu, India.
| |
Collapse
|
2
|
Wu J, Alipouri Y, Luo H, Zhong L. Ultraviolet photocatalytic oxidation technology for indoor volatile organic compound removal: A critical review with particular focus on byproduct formation and modeling. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126766. [PMID: 34396962 DOI: 10.1016/j.jhazmat.2021.126766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic oxidation (PCO)-based air filters are gaining attention owing to their capacity for indoor pollutant removal. This review summarized the application of ultraviolet-photocatalytic oxidation (UV-PCO) in heating, ventilation, and air conditioning (HVAC) systems, including the modeling studies, reactor designs, the influence of operational conditions, with emphasis on the common issue of byproduct generation, and the resulting indoor byproduct exposure levels. As a result, the concentrations of the typical byproducts for the most challenging pollutants were relatively low, except for the PCO of ethanol. Hence, UV-PCO is not recommended for buildings with high ethanol concentrations. Based on the formation of the formaldehyde, a new exposure-based evaluation standard for UV-PCO was developed to evaluate the feasibility of integrating UV-PCO reactors into an HVAC system. Then, applying the newly developed evaluation standard on a developed database (data size: 174) from the literature, 32.5% of the cases were identified as suitable for HVAC system applications in residential and commercial buildings, and all cases could be used for industrial buildings. Finally, a case study was conducted to develop a support vector machine (SVM) classification model with good accuracy, and challenging compound types, inlet concentrations, and air velocity were found to be the main parameters affecting the applicability of UV-PCO.
Collapse
Affiliation(s)
- Jing Wu
- Department of Mechanical Engineering, University of Alberta, 9211-116 street NW, Edmonton, Alberta, Canada T6G 1H9
| | - Yousef Alipouri
- Department of Mechanical Engineering, University of Alberta, 9211-116 street NW, Edmonton, Alberta, Canada T6G 1H9
| | - Hao Luo
- Department of Mechanical Engineering, University of Alberta, 9211-116 street NW, Edmonton, Alberta, Canada T6G 1H9
| | - Lexuan Zhong
- Department of Mechanical Engineering, University of Alberta, 9211-116 street NW, Edmonton, Alberta, Canada T6G 1H9.
| |
Collapse
|