1
|
Mucke HAM. Drug Repurposing Patent Applications July-September 2024. Assay Drug Dev Technol 2025; 23:44-52. [PMID: 39611655 DOI: 10.1089/adt.2024.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
|
2
|
Nisar A, Khan S, Li W, Hu L, Samarawickrama PN, Gold NM, Zi M, Mehmood SA, Miao J, He Y. Hypoxia and aging: molecular mechanisms, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e786. [PMID: 39415849 PMCID: PMC11480526 DOI: 10.1002/mco2.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Aging is a complex biological process characterized by the gradual decline of cellular functions, increased susceptibility to diseases, and impaired stress responses. Hypoxia, defined as reduced oxygen availability, is a critical factor that influences aging through molecular pathways involving hypoxia-inducible factors (HIFs), oxidative stress, inflammation, and epigenetic modifications. This review explores the interconnected roles of hypoxia in aging, highlighting how hypoxic conditions exacerbate cellular damage, promote senescence, and contribute to age-related pathologies, including cardiovascular diseases, neurodegenerative disorders, cancer, metabolic dysfunctions, and pulmonary conditions. By examining the molecular mechanisms linking hypoxia to aging, we identify key pathways that serve as potential therapeutic targets. Emerging interventions such as HIF modulators, antioxidants, senolytics, and lifestyle modifications hold promise in mitigating the adverse effects of hypoxia on aging tissues. However, challenges such as the heterogeneity of aging, lack of reliable biomarkers, and safety concerns regarding hypoxia-targeted therapies remain. This review emphasizes the need for personalized approaches and advanced technologies to develop effective antiaging interventions. By integrating current knowledge, this review provides a comprehensive framework that underscores the importance of targeting hypoxia-induced pathways to enhance healthy aging and reduce the burden of age-related diseases.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Sawar Khan
- Department of Cell Biology, School of Life SciencesCentral South UniversityChangshaHunanChina
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Wen Li
- Department of EndocrinologyThe Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province)KunmingYunnanChina
| | - Li Hu
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Naheemat Modupeola Gold
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Meiting Zi
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | | | - Jiarong Miao
- Department of GastroenterologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
3
|
Wang CH, Lin GC, Fu RH, Huang YC, Chen SY, Lin SZ, Harn HJ, Shyu WC, Huang YF, Jeng LB, Liu SP. Neural stem cells derived from α-synuclein-knockdown iPS cells alleviate Parkinson's disease. Cell Death Discov 2024; 10:407. [PMID: 39285205 PMCID: PMC11405526 DOI: 10.1038/s41420-024-02176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Stem cells have the potential to replace damaged or defective cells and assist in the development of treatments for neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease. iPS cells derived from patient-specific somatic cells are not only ethically acceptable, but they also avoid complications relating to immune rejection. Currently, researchers are developing stem cell-based therapies for PD using induced pluripotent stem (iPS) cells. iPS cells can differentiate into cells from any of the three germ layers, including neural stem cells (NSCs). Transplantation of neural stem cells (NSCs) is an emerging therapy for treating neurological disorders by restoring neuronal function. Nevertheless, there are still challenges associated with the quality and source of neural stem cells. This issue can be addressed by genetically edited iPS cells. In this study, shRNA was used to knock down the expression of mutant α-synuclein (SNCA) in iPS cells that were generated from SNCA A53T transgenic mice, and these iPS cells were differentiated to NSCs. After injecting these NSCs into SNCA A53T mice, the therapeutic effects of these cells were evaluated. We found that the transplantation of neural stem cells produced from SNCA A53T iPS cells with knocking down SNCA not only improved SNCA A53T mice coordination abilities, balance abilities, and locomotor activities but also significantly prolonged their lifespans. The results of this study suggest an innovative therapeutic approach that combines stem cell therapy and gene therapy for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Chie-Hong Wang
- Cell Therapy Center, China Medical University Hospital, Taichung, 404, Taiwan
- Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, 411, Taiwan
- Department of Neurology, China Medical University Hospital, Taichung, 404, Taiwan
| | - Guan-Cyun Lin
- Graduate Institute of Biomedical Science, China Medical University, Taichung, 411, Taiwan
| | - Ru-Huei Fu
- Ph.D. Program for Aging, College of Medicine, China Medical University, Taichung, 411, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung, 404, Taiwan
| | - Yu-Chuen Huang
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, 404, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 411, Taiwan
| | - Shih-Yin Chen
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, 404, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 411, Taiwan
| | - Shinn-Zong Lin
- Buddhist Tzu Chi Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, 970, Taiwan
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital and Tzu Chi University, Hualien, 970, Taiwan
| | - Woei-Cherng Shyu
- Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, 411, Taiwan
- Department of Neurology, China Medical University Hospital, Taichung, 404, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung, 404, Taiwan
| | - Yi-Fang Huang
- Department of General Dentistry, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Graduate Institute of Dental and Craniofacial Science, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
| | - Long-Bin Jeng
- Cell Therapy Center, China Medical University Hospital, Taichung, 404, Taiwan
- Organ Transplantation Center, China Medical University Hospital, Taichung, 404, Taiwan
| | - Shih-Ping Liu
- Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, 411, Taiwan.
- Ph.D. Program for Aging, College of Medicine, China Medical University, Taichung, 411, Taiwan.
- Translational Medicine Research Center, China Medical University Hospital, Taichung, 404, Taiwan.
| |
Collapse
|
4
|
Fan Y, Goh ELK, Chan JKY. Neural Cells for Neurodegenerative Diseases in Clinical Trials. Stem Cells Transl Med 2023; 12:510-526. [PMID: 37487111 PMCID: PMC10427968 DOI: 10.1093/stcltm/szad041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/11/2023] [Indexed: 07/26/2023] Open
Abstract
Neurodegenerative diseases (ND) are an entire spectrum of clinical conditions that affect the central and peripheral nervous system. There is no cure currently, with treatment focusing mainly on slowing down progression or symptomatic relief. Cellular therapies with various cell types from different sources are being conducted as clinical trials for several ND diseases. They include neural, mesenchymal and hemopoietic stem cells, and neural cells derived from embryonic stem cells and induced pluripotent stem cells. In this review, we present the list of cellular therapies for ND comprising 33 trials that used neural stem progenitors, 8 that used differentiated neural cells ,and 109 trials that involved non-neural cells in the 7 ND. Encouraging results have been shown in a few early-phase clinical trials that require further investigations in a randomized setting. However, such definitive trials may not be possible given the relative cost of the trials, and in the setting of rare diseases.
Collapse
Affiliation(s)
- Yiping Fan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
| | - Eyleen L K Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
5
|
He XY, Zhou YR, Mu T, Liao YF, Jiang L, Qin Y, Cai JH. Magnetic resonance imaging focused on the ferritin heavy chain 1 reporter gene detects neuronal differentiation in stem cells. Neural Regen Res 2023; 18:1563-1569. [PMID: 36571363 PMCID: PMC10075097 DOI: 10.4103/1673-5374.358608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The neuronal differentiation of mesenchymal stem cells offers a new strategy for the treatment of neurological disorders. Thus, there is a need to identify a noninvasive and sensitive in vivo imaging approach for real-time monitoring of transplanted stem cells. Our previous study confirmed that magnetic resonance imaging, with a focus on the ferritin heavy chain 1 reporter gene, could track the proliferation and differentiation of bone marrow mesenchymal stem cells that had been transduced with lentivirus carrying the ferritin heavy chain 1 reporter gene. However, we could not determine whether or when bone marrow mesenchymal stem cells had undergone neuronal differentiation based on changes in the magnetic resonance imaging signal. To solve this problem, we identified a neuron-specific enolase that can be differentially expressed before and after neuronal differentiation in stem cells. In this study, we successfully constructed a lentivirus carrying the neuron-specific enolase promoter and expressing the ferritin heavy chain 1 reporter gene; we used this lentivirus to transduce bone marrow mesenchymal stem cells. Cellular and animal studies showed that the neuron-specific enolase promoter effectively drove the expression of ferritin heavy chain 1 after neuronal differentiation of bone marrow mesenchymal stem cells; this led to intracellular accumulation of iron and corresponding changes in the magnetic resonance imaging signal. In summary, we established an innovative magnetic resonance imaging approach focused on the induction of reporter gene expression by a neuron-specific promoter. This imaging method can be used to noninvasively and sensitively detect neuronal differentiation in stem cells, which may be useful in stem cell-based therapies.
Collapse
Affiliation(s)
- Xiao-Ya He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yi-Rui Zhou
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tong Mu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing; Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi-Fan Liao
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics; Department of Nuclear Medicine, The Second Hospital of the Army Medical University, Chongqing, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Qin
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jin-Hua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
6
|
Nie L, Yao D, Chen S, Wang J, Pan C, Wu D, Liu N, Tang Z. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov 2023; 9:215. [PMID: 37393356 DOI: 10.1038/s41420-023-01532-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Due to the limited capacity of the adult mammalian brain to self-repair and regenerate, neurological diseases, especially neurodegenerative disorders and stroke, characterized by irreversible cellular damage are often considered as refractory diseases. Neural stem cells (NSCs) play a unique role in the treatment of neurological diseases for their abilities to self-renew and form different neural lineage cells, such as neurons and glial cells. With the increasing understanding of neurodevelopment and advances in stem cell technology, NSCs can be obtained from different sources and directed to differentiate into a specific neural lineage cell phenotype purposefully, making it possible to replace specific cells lost in some neurological diseases, which provides new approaches to treat neurodegenerative diseases as well as stroke. In this review, we outline the advances in generating several neuronal lineage subtypes from different sources of NSCs. We further summarize the therapeutic effects and possible therapeutic mechanisms of these fated specific NSCs in neurological disease models, with special emphasis on Parkinson's disease and ischemic stroke. Finally, from the perspective of clinical translation, we compare the strengths and weaknesses of different sources of NSCs and different methods of directed differentiation, and propose future research directions for directed differentiation of NSCs in regenerative medicine.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dabao Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430030, China
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, 430030, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
7
|
Pranty AI, Shumka S, Adjaye J. Bilirubin-Induced Neurological Damage: Current and Emerging iPSC-Derived Brain Organoid Models. Cells 2022; 11:2647. [PMID: 36078055 PMCID: PMC9454749 DOI: 10.3390/cells11172647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Bilirubin-induced neurological damage (BIND) has been a subject of studies for decades, yet the molecular mechanisms at the core of this damage remain largely unknown. Throughout the years, many in vivo chronic bilirubin encephalopathy models, such as the Gunn rat and transgenic mice, have further elucidated the molecular basis of bilirubin neurotoxicity as well as the correlations between high levels of unconjugated bilirubin (UCB) and brain damage. Regardless of being invaluable, these models cannot accurately recapitulate the human brain and liver system; therefore, establishing a physiologically recapitulating in vitro model has become a prerequisite to unveil the breadth of complexities that accompany the detrimental effects of UCB on the liver and developing human brain. Stem-cell-derived 3D brain organoid models offer a promising platform as they bear more resemblance to the human brain system compared to existing models. This review provides an explicit picture of the current state of the art, advancements, and challenges faced by the various models as well as the possibilities of using stem-cell-derived 3D organoids as an efficient tool to be included in research, drug screening, and therapeutic strategies for future clinical applications.
Collapse
Affiliation(s)
| | | | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Faculty of Medicine, Heinrich-Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany
| |
Collapse
|
8
|
Yan JN, Zhang HY, Li JR, Chen Y, Jiang YC, Shen JB, Ke KF, Gu XS. Schwann cells differentiated from skin-derived precursors provide neuroprotection via autophagy inhibition in a cellular model of Parkinson's disease. Neural Regen Res 2021; 17:1357-1363. [PMID: 34782582 PMCID: PMC8643066 DOI: 10.4103/1673-5374.327353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Autophagy has been shown to play an important role in Parkinson’s disease. We hypothesized that skin-derived precursor cells exhibit neuroprotective effects in Parkinson’s disease through affecting autophagy. In this study, 6-hydroxydopamine-damaged SH-SY5Y cells were pretreated with a culture medium containing skin-derived precursors differentiated into Schwann cells (SKP-SCs). The results showed that the SKP-SC culture medium remarkably enhanced the activity of SH-SY5Y cells damaged by 6-hydroxydopamine, reduced excessive autophagy, increased tyrosine hydroxylase expression, reduced α-synuclein expression, reduced the autophagosome number, and activated the PI3K/AKT/mTOR pathway. Autophagy activator rapamycin inhibited the effects of SKP-SCs, and autophagy inhibitor 3-methyladenine had the opposite effect. These findings confirm that SKP-SCs modulate the PI3K/AKT/mTOR pathway to inhibit autophagy, thereby exhibiting a neuroprotective effect in a cellular model of Parkinson’s disease. This study was approved by the Animal Ethics Committee of Laboratory Animal Center of Nantong University (approval No. S20181009-205) on October 9, 2018.
Collapse
Affiliation(s)
- Jia-Nan Yan
- Department of Neurology, Affiliated Hospital of Nantong University; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Hai-Ying Zhang
- Department of Neurology, Affiliated Hospital of Nantong University; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jun-Rui Li
- Department of Clinical Medicine, The First Clinical Medical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ying Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong; Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Afflicted Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yong-Cheng Jiang
- Department of Neurology, Affiliated Hospital of Nantong University; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jia-Bing Shen
- Department of Neurology, Affiliated Hospital of Nantong University; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Kai-Fu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Su Gu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|