1
|
Li Y, Jia Z, Kong X, Zhao H, Liu X, Cui G, Luo J. Effect of 5-Aza-2'-deoxycytidine on T-cell acute lymphoblastic leukemia cell biological behaviors and PTEN expression. Cytojournal 2024; 21:36. [PMID: 39563669 PMCID: PMC11574681 DOI: 10.25259/cytojournal_31_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 11/21/2024] Open
Abstract
Objective We currently face a sharp increase of T-cell acute lymphoblastic leukemia (T-ALL) incidence and a challenge of unmasking its complex etiology. The deoxycytidine analog 5-Aza-2'-deoxycytidine (5-Aza-dC) is currently the most common nucleoside methyltransferase inhibitor. The objective of this study was to clarify the role of 5-Aza-dC in T-ALL cell biological behaviors and phosphatase and tensin homolog deleted on chromosome ten (PTEN) expression. Material and Methods T-ALL cell lines were divided into the experimental group with 5-Aza-dC solution treatment, and the control group without treatment. PTEN methylation was detected using methylation-specific polymerase chain reaction (MS-PCR). Following the measurement of cell proliferation, viability, apoptosis, invasion, migration, etc., quantitative reverse transcription-polymerase chain reaction (PCR) was conducted to detect PTEN, DNA methyl-transferases (DNMT1), DNMT3a, MBD2, and MeCP2 expressions; Western blot to detect PTEN, PI3K, AKT, and mTOR protein expressions. In addition, rescue experiments to inhibit and restore the expression of PTEN in different groups were performed for further identification of the results in the former parts. Results MS-PCR results showed that in Jurkat cells, the target band was amplified using methylated primers for the PTEN gene promoter region; moreover, at 10 μmol/L of 5-Aza-dC for 24 h, PTEN methylation was completely removed without any un-methylated band observed. The experimental group had significantly lower cell proliferation and viability rates, higher apoptosis rates, decreased cell proportion in S phase, reduced invasion and migration; increased PTEN expression, decreased DNMT1, DNMT3a, MBD2, and MeCP2 mRNA expressions; and decreased PI3K, AKT, and mTOR protein expressions than those in the control group (all P < 0.05). Furthermore, according to the rescue experiment, silenced PTEN expression weakened the beneficial roles of 5-Aza-dC treatment, and resulted in significantly higher cell proliferation and viability rates, lower apoptosis rates, increased cell proportion in S phase, increased cell invasion and migration; decreased PTEN expression, elevated DNMT1, DNMT3a, MBD2, and MeCP2 mRNA expressions, and higher PI3K, AKT, and mTOR protein expressions (all P < 0.05). While restored PTEN expression enhanced functions of 5-Aza-dC treatment, leading to obviously lower cell proliferation and viability rates, higher apoptosis rates, increased cell proportion in G1 phase, and reduced cell invasion and migration; as well as increased PTEN expression, decreased DNMT1, DNMT3a, MBD2, and MeCP2 mRNA expressions, and lower PI3K, AKT, and mTOR protein expressions (all P < 0.05). Conclusion Demethylation treatment with 5-Aza-dC can inhibit T-ALL cell malignant biological behaviors and enhance the sensitivity to chemotherapy agents possibly, which may be related to the inhibited expressions of DNMT1, DNMT3a, MBD2, and MeCP2, and restored expression activity of PTEN to negatively regulate the PI3K/AKT signal transduction. Our silencing and restoration of PTEN expressions further support our findings, highlighting that demethylation with 5-Aza-dC to restore the anti-tumor activity of the tumor suppressor gene PTEN may be a promising therapeutic option for treating T-ALL.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Zhenwei Jia
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Xiaoyang Kong
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Hongbo Zhao
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Xiaoyan Liu
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Guirong Cui
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Jianmin Luo
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| |
Collapse
|
3
|
Fu J, Zhang L, Li D, Tian T, Wang X, Sun H, Ge A, Liu Y, Zhang X, Huang H, Meng S, Zhang D, Zhao L, Sun S, Zheng T, Jia C, Zhao Y, Pang D. DNA Methylation of Imprinted Genes KCNQ1, KCNQ1OT1, and PHLDA2 in Peripheral Blood Is Associated with the Risk of Breast Cancer. Cancers (Basel) 2022; 14:cancers14112652. [PMID: 35681632 PMCID: PMC9179312 DOI: 10.3390/cancers14112652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Methylation alterations of imprinted genes lead to loss of imprinting (LOI). Although studies have explored the mechanism of LOI in breast cancer (BC) development, the association between imprinted gene methylation in peripheral blood and BC risk is largely unknown. We utilized HumanMethylation450 data from TCGA and GEO (n = 1461) to identify the CpG sites of imprinted genes associated with BC risk. Furthermore, we conducted an independent case-control study (n = 1048) to validate DNA methylation of these CpG sites in peripheral blood and BC susceptibility. cg26709929, cg08446215, cg25306939, and cg16057921, which are located at KCNQ1, KCNQ1OT1, and PHLDA2, were discovered to be associated with BC risk. Subsequently, the association between cg26709929, cg26057921, and cg25306939 methylation and BC risk was validated in our inhouse dataset. All 22 CpG sites in the KCNQ1OT1 region were associated with BC risk. Individuals with a hypermethylated KCNQ1OT1 region (>0.474) had a lower BC risk (OR: 0.553, 95% CI: 0.397−0.769). Additionally, the methylation of the KCNQ1OT1 region was not significantly different among B cells, monocytes, and T cells, which was also observed at CpG sites in PHLDA2. In summary, the methylation of KCNQ1, KCNQ1OT1, and PHLDA2 was associated with BC risk, and KCNQ1OT1 methylation could be a potential biomarker for BC risk assessment.
Collapse
Affiliation(s)
- Jinming Fu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Zhang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Dapeng Li
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Tian Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Xuan Wang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Hongru Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Anqi Ge
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Yupeng Liu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China;
| | - Hao Huang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Shuhan Meng
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Ding Zhang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Liyuan Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Simin Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Ting Zheng
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Chenyang Jia
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
- Correspondence: (Y.Z.); (D.P.); Tel.: +86-451-8750-2823 (Y.Z.); +86-451-8750-2885 (D.P.)
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China;
- Correspondence: (Y.Z.); (D.P.); Tel.: +86-451-8750-2823 (Y.Z.); +86-451-8750-2885 (D.P.)
| |
Collapse
|
4
|
Miao YD, Mu LJ, Mi DH. Metabolism-associated genes in occurrence and development of gastrointestinal cancer: Latest progress and future prospect. World J Gastrointest Oncol 2021; 13:758-771. [PMID: 34457185 PMCID: PMC8371517 DOI: 10.4251/wjgo.v13.i8.758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/27/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancer remains one of the most prevalent cancers in the world. The occurrence and progression of GI cancer involve multiple events. Metabolic reprogramming is one of the hallmarks of cancer and is intricately related to tumorigenesis. Many metabolic genes are involved in the occurrence and development of GI cancer. Research approaches combining tumor genomics and metabolomics are more likely to provide deeper insights into this field. In this paper, we review the roles of metabolism-associated genes, especially those involved in the regulation pathways, in the occurrence and progression of GI cancer. We provide the latest progress and future prospect into the different molecular mechanisms of metabolism-associated genes involved in the occurrence and development of GI cancer.
Collapse
Affiliation(s)
- Yan-Dong Miao
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Lin-Jie Mu
- The First Affiliated Hospital, Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Deng-Hai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Dean’s Office, Gansu Academy of Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, China
| |
Collapse
|