1
|
Polyhydroxyalkanoate (PHA) Biopolyesters - Emerging and Major Products of Industrial Biotechnology. THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Background: Industrial Biotechnology (“White Biotechnology”) is the large-scale production of materials and chemicals using renewable raw materials along with biocatalysts like enzymes derived from microorganisms or by using microorganisms themselves (“whole cell biocatalysis”). While the production of ethanol has existed for several millennia and can be considered a product of Industrial Biotechnology, the application of complex and engineered biocatalysts to produce industrial scale products with acceptable economics is only a few decades old. Bioethanol as fuel, lactic acid as food and PolyHydroxyAlkanoates (PHA) as a processible material are some examples of products derived from Industrial Biotechnology.
Purpose and Scope: Industrial Biotechnology is the sector of biotechnology that holds the most promise in reducing our dependence on fossil fuels and mitigating environmental degradation caused by pollution, since all products that are made today from fossil carbon feedstocks could be manufactured using Industrial Biotechnology – renewable carbon feedstocks and biocatalysts. To match the economics of fossil-based bulk products, Industrial Biotechnology-based processes must be sufficiently robust. This aspect continues to evolve with increased technological capabilities to engineer biocatalysts (including microorganisms) and the decreasing relative price difference between renewable and fossil carbon feedstocks. While there have been major successes in manufacturing products from Industrial Biotechnology, challenges exist, although its promise is real. Here, PHA biopolymers are a class of product that is fulfilling this promise.
Summary and Conclusion: The authors illustrate the benefits and challenges of Industrial Biotechnology, the circularity and sustainability of such processes, its role in reducing supply chain issues, and alleviating societal problems like poverty and hunger. With increasing awareness among the general public and policy makers of the dangers posed by climate change, pollution and persistent societal issues, Industrial Biotechnology holds the promise of solving these major problems and is poised for a transformative upswing in the manufacture of bulk chemicals and materials from renewable feedstocks and biocatalysts.
Collapse
|
2
|
Udayakumar GP, Muthusamy S, Selvaganesh B, Sivarajasekar N, Rambabu K, Sivamani S, Sivakumar N, Maran JP, Hosseini-Bandegharaei A. Ecofriendly biopolymers and composites: Preparation and their applications in water-treatment. Biotechnol Adv 2021; 52:107815. [PMID: 34400260 DOI: 10.1016/j.biotechadv.2021.107815] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/16/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023]
Abstract
Over the past few decades, the term polymer has been repeatedly used in several industries for their immense characteristics in different applications. Polymers and their composites which were prepared from chemical monomer sources turned out to be potentially harmful to the environment due to their tedious degradation process. Biopolymers are natural substitutes for synthetic polymers which can be efficiently extricated from natural sources. They are predominantly available as polymeric units as well as monomeric units that are linked covalently. These environment-friendly biopolymers and their composites can be categorized based on their numerous sources, different methods of preparation and their potential form of usage. They were found to be biocompatible and biodegradable which make them exceptionally useful in environment based applications, mainly in the process of water treatment, both potable and wastewater. Further, the biopolymer and biopolymer composites easily fit into different parts of the treatment process by acting as filtration media, adsorbents, coagulants and as flocculants. The primary focus of this review is to provide a comprehensive information of biopolymers and biopolymer composites from synthesis to their usefulness for their productive application in water treatment processes. On the whole, it can be substantiated that the biopolymers were identified to play a notable adversary to the synthetic polymers in treating waters with an indispensable need for an elaborative study in the production of the biopolymers.
Collapse
Affiliation(s)
- Gowthama Prabu Udayakumar
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Subbulakshmi Muthusamy
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Bharathi Selvaganesh
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - N Sivarajasekar
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India.
| | | | - Selvaraju Sivamani
- Chemical Engineering Section, Engineering Department, Salalah College of Technology, Salalah, Oman.
| | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - J Prakash Maran
- Department of Food Science and Nutrition, Periyar University, Salem. India.
| | | |
Collapse
|