1
|
Fuchs B, Mert S, Kuhlmann C, Taha S, Birt A, Nickelsen J, Schenck TL, Giunta RE, Wiggenhauser PS, Moellhoff N. Biocompatibility of Synechococcus sp. PCC 7002 with Human Dermal Cells In Vitro. Int J Mol Sci 2024; 25:3922. [PMID: 38612734 PMCID: PMC11012068 DOI: 10.3390/ijms25073922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Being the green gold of the future, cyanobacteria have recently attracted considerable interest worldwide. This study investigates the adaptability and biocompatibility of the cyanobacterial strain Synechococcus sp. PCC 7002 with human dermal cells, focusing on its potential application in biomedical contexts. First, we investigated the adaptability of Synechococcus PCC 7002 bacteria to human cell culture conditions. Next, we evaluated the biocompatibility of cyanobacteria with common dermal cells, like 3T3 fibroblasts and HaCaT keratinocytes. Therefore, cells were directly and indirectly cocultured with the corresponding cells, and we measured metabolic activity (AlamarBlue assay) and proliferation (cell count and PicoGreen assay). The lactate dehydrogenase (LDH) assay was performed to determine the cytotoxic effect of cyanobacteria and their nutrition medium on human dermal cells. The cyanobacteria exhibited exponential growth under conventional human cell culture conditions, with the temperature and medium composition not affecting their viability. In addition, the effect of illumination on the proliferation capacity was investigated, showing a significant impact of light exposure on bacterial growth. The measured oxygen production under hypoxic conditions demonstrated a sufficient oxygen supply for further tissue engineering approaches depending on the number of bacteria. There were no significant adverse effects on human cell viability and growth under coculture conditions, whereas the LDH assay assessed signs of cytotoxicity regarding 3T3 fibroblasts after 2 days of coculturing. These negative effects were dismissed after 4 days. The findings highlight the potential of Synechococcus sp. PCC 7002 for integration into biomedical approaches. We found no cytotoxicity of cyanobacteria on 3T3 fibroblasts and HaCaT keratinocytes, thus paving the way for further in vivo studies to assess long-term effects and systemic reactions.
Collapse
Affiliation(s)
- Benedikt Fuchs
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Sinan Mert
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Constanze Kuhlmann
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Sara Taha
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Alexandra Birt
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Jörg Nickelsen
- Molecular Plant Science, Department Biology I, LMU Munich, 80336 Munich, Germany;
| | - Thilo Ludwig Schenck
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Riccardo Enzo Giunta
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Paul Severin Wiggenhauser
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| |
Collapse
|
2
|
Naik B, Mishra R, Kumar V, Mishra S, Gupta U, Rustagi S, Gupta AK, Preet MS, Bhatt SC, Rizwanuddin S. Micro-algae: Revolutionizing food production for a healthy and sustainable future. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 15:100939. [DOI: 10.1016/j.jafr.2023.100939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Hong SJ, Yim KJ, Ryu YJ, Lee CG, Jang HJ, Jung JY, Kim ZH. Improvement of Lutein and Zeaxanthin Production in Mychonastes sp. 247 by Optimizing Light Intensity and Culture Salinity Conditions. J Microbiol Biotechnol 2023; 33:260-267. [PMID: 36474324 PMCID: PMC9998206 DOI: 10.4014/jmb.2211.11006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
In this study, we sought to improve lutein and zeaxanthin production in Mychonastes sp. 247 and investigated the effect of environmental factors on lutein and zeaxanthin productivity in Mychonastes sp. The basic medium selection and N:P ratio were adjusted to maximize cell growth in one-stage culture, and lutein and zeaxanthin production conditions were optimized using a central composite design for two-stage culture. The maximum lutein production was observed at a light intensity of 60 μE/m2/s and salinity of 0.49%, and the maximum zeaxanthin production was observed at a light intensity of 532 μE/m2/s and salinity of 0.78%. Lutein and zeaxanthin production in the optimized medium increased by up to 2 and 2.6 folds, respectively, compared to that in the basic medium. Based on these results, we concluded that the optimal conditions for lutein and zeaxanthin production are different and that optimization of light intensity and culture salinity conditions may help increase carotenoid production. This study presents a useful and potential strategy for optimizing microalgal culture conditions to improve the productivity of lutein and zeaxanthin, which has applications in the functional food field.
Collapse
Affiliation(s)
- Seong-Joo Hong
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea.,Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon 22212, Republic of Korea
| | - Kyung June Yim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Young-Jin Ryu
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Choul-Gyun Lee
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea.,Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon 22212, Republic of Korea
| | - Hyun-Jin Jang
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ji Young Jung
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Z-Hun Kim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| |
Collapse
|
4
|
Diaz CJ, Douglas KJ, Kang K, Kolarik AL, Malinovski R, Torres-Tiji Y, Molino JV, Badary A, Mayfield SP. Developing algae as a sustainable food source. Front Nutr 2023; 9:1029841. [PMID: 36742010 PMCID: PMC9892066 DOI: 10.3389/fnut.2022.1029841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Current agricultural and food production practices are facing extreme stress, posed by climate change and an ever-increasing human population. The pressure to feed nearly 8 billion people while maintaining a minimal impact on the environment has prompted a movement toward new, more sustainable food sources. For thousands of years, both the macro (seaweed and kelp) and micro (unicellular) forms of algae have been cultivated as a food source. Algae have evolved to be highly efficient at resource utilization and have proven to be a viable source of nutritious biomass that could address many of the current food production issues. Particularly for microalgae, studies of their large-scale growth and cultivation come from the biofuel industry; however, this knowledge can be reasonably translated into the production of algae-based food products. The ability of algae to sequester CO2 lends to its sustainability by helping to reduce the carbon footprint of its production. Additionally, algae can be produced on non-arable land using non-potable water (including brackish or seawater), which allows them to complement rather than compete with traditional agriculture. Algae inherently have the desired qualities of a sustainable food source because they produce highly digestible proteins, lipids, and carbohydrates, and are rich in essential fatty acids, vitamins, and minerals. Although algae have yet to be fully domesticated as food sources, a variety of cultivation and breeding tools exist that can be built upon to allow for the increased productivity and enhanced nutritional and organoleptic qualities that will be required to bring algae to mainstream utilization. Here we will focus on microalgae and cyanobacteria to highlight the current advancements that will expand the variety of algae-based nutritional sources, as well as outline various challenges between current biomass production and large-scale economic algae production for the food market.
Collapse
Affiliation(s)
- Crisandra J. Diaz
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Kai J. Douglas
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Kalisa Kang
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Ashlynn L. Kolarik
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Rodeon Malinovski
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Yasin Torres-Tiji
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - João V. Molino
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Amr Badary
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Stephen P. Mayfield
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States,California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, United States,*Correspondence: Stephen P. Mayfield,
| |
Collapse
|
5
|
Casazza AP, Lombardi A, Menin B, Santabarbara S. Temperature-induced zeaxanthin overproduction in Synechococcus elongatus PCC 7942. Photochem Photobiol Sci 2022; 22:783-794. [PMID: 36536270 DOI: 10.1007/s43630-022-00352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
The exogenous crtZ gene from Brevundimonas sp. SD212, coding for a 3,3' β-car hydroxylase, was expressed in Synechococcus elongatus PCC 7942 under the control of a temperature-inducible promoter in an attempt to engineer the carotenoid metabolic pathway, to increase the content of zeaxanthin and its further hydroxylated derivatives caloxanthin and nostoxanthin. These molecules are of particular interest due to their renowned antioxidant properties. Cultivation of the engineered strain S7942Z-Ti at 35 °C, a temperature which is well tolerated by the wild-type strain and at which the inducible expression system is activated, led to a significant redistribution of the relative carotenoid content. β-Carotene decreased to about 10% of the pool that is an excess of a threefold decrease with respect to the control, and concomitantly, zeaxanthin became the dominant carotenoid accounting for about half of the pool. As a consequence, zeaxanthin and its derivatives caloxanthin and nostoxanthin collectively accounted for about 90% of the accumulated carotenoids. Yet, upon induction of CrtZ expression at 35 °C the S7942Z-Ti strain displayed a substantial growth impairment accompanied, initially, by a relative loss of carotenoids and successively by the appearance of chlorophyll degradation products which can be interpreted as markers of cellular stress. These observations suggest a limit to the exploitation of Synechococcus elongatus PCC 7942 for biotechnological purposes aimed at increasing the production of hydroxylated carotenoids.
Collapse
Affiliation(s)
- Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Via Bassini 15a, 20133, Milan, Italy.
| | - Alessandro Lombardi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Via Bassini 15a, 20133, Milan, Italy
| | - Barbara Menin
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Via Bassini 15a, 20133, Milan, Italy
| | - Stefano Santabarbara
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Via Bassini 15a, 20133, Milan, Italy.
| |
Collapse
|
6
|
Mai DHA, Nguyen LT, Lee EY. TSSNote-CyaPromBERT: Development of an integrated platform for highly accurate promoter prediction and visualization of Synechococcus sp. and Synechocystis sp. through a state-of-the-art natural language processing model BERT. Front Genet 2022; 13:1067562. [PMID: 36523764 PMCID: PMC9745317 DOI: 10.3389/fgene.2022.1067562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 07/30/2023] Open
Abstract
Since the introduction of the first transformer model with a unique self-attention mechanism, natural language processing (NLP) models have attained state-of-the-art (SOTA) performance on various tasks. As DNA is the blueprint of life, it can be viewed as an unusual language, with its characteristic lexicon and grammar. Therefore, NLP models may provide insights into the meaning of the sequential structure of DNA. In the current study, we employed and compared the performance of popular SOTA NLP models (i.e., XLNET, BERT, and a variant DNABERT trained on the human genome) to predict and analyze the promoters in freshwater cyanobacterium Synechocystis sp. PCC 6803 and the fastest growing cyanobacterium Synechococcus elongatus sp. UTEX 2973. These freshwater cyanobacteria are promising hosts for phototrophically producing value-added compounds from CO2. Through a custom pipeline, promoters and non-promoters from Synechococcus elongatus sp. UTEX 2973 were used to train the model. The trained model achieved an AUROC score of 0.97 and F1 score of 0.92. During cross-validation with promoters from Synechocystis sp. PCC 6803, the model achieved an AUROC score of 0.96 and F1 score of 0.91. To increase accessibility, we developed an integrated platform (TSSNote-CyaPromBERT) to facilitate large dataset extraction, model training, and promoter prediction from public dRNA-seq datasets. Furthermore, various visualization tools have been incorporated to address the "black box" issue of deep learning and feature analysis. The learning transfer ability of large language models may help identify and analyze promoter regions for newly isolated strains with similar lineages.
Collapse
|
7
|
Bioremediation of Crude Oil by Haematococcus Pluvialis: A Preliminary Study. Processes (Basel) 2022. [DOI: 10.3390/pr10122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nowadays, oil pollution is one of the main environmental problems. The current methods for recovering spills mainly involve chemical agents, but scientific research has focused on more natural and less harmful techniques for the environment, including a consortium of bacteria and microalgae to clean up water contaminated by hydrocarbons. The purpose of this preliminary study was to evaluate the ability of a microalga belonging to Chlorophyceae to grow in the presence of crude oil and remove the principal contaminants. H. pluvialis, which is usually used for nutraceutical purposes, thanks to the production of astaxanthin, was able to grow in anaerobic conditions, varying its metabolism from autotrophic to heterotrophic, exploiting the carbon present in the solution deriving from the presence of 1% of crude oil. Furthermore, the results of bioremediation showed a relevant reduction in chemical pollutants such as nitrate, fluoride, sulfate, and phosphate. The most important aspect of the study was the reduction after 160 days in the hydrocarbon concentration inside not only the culture medium (−32%) but also the algal biomass (−80.25%), demonstrating an optimized degradation rather than a simple absorption inside the alga.
Collapse
|