1
|
Hissen KL, He W, Wu G, Criscitiello MF. Immunonutrition: facilitating mucosal immune response in teleost intestine with amino acids through oxidant-antioxidant balance. Front Immunol 2023; 14:1241615. [PMID: 37841275 PMCID: PMC10570457 DOI: 10.3389/fimmu.2023.1241615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Comparative animal models generate fundamental scientific knowledge of immune responses. However, these studies typically are conducted in mammals because of their biochemical and physiological similarity to humans. Presently, there has been an interest in using teleost fish models to study intestinal immunology, particularly intestinal mucosa immune response. Instead of targeting the pathogen itself, a preferred approach for managing fish health is through nutrient supplementation, as it is noninvasive and less labor intensive than vaccine administrations while still modulating immune properties. Amino acids (AAs) regulate metabolic processes, oxidant-antioxidant balance, and physiological requirements to improve immune response. Thus, nutritionists can develop sustainable aquafeeds through AA supplementation to promote specific immune responses, including the intestinal mucosa immune system. We propose the use of dietary supplementation with functional AAs to improve immune response by discussing teleost fish immunology within the intestine and explore how oxidative burst is used as an immune defense mechanism. We evaluate immune components and immune responses in the intestine that use oxidant-antioxidant balance through potential selection of AAs and their metabolites to improve mucosal immune capacity and gut integrity. AAs are effective modulators of teleost gut immunity through oxidant-antioxidant balance. To incorporate nutrition as an immunoregulatory means in teleost, we must obtain more tools including genomic, proteomic, nutrition, immunology, and macrobiotic and metabonomic analyses, so that future studies can provide a more holistic understanding of the mucosal immune system in fish.
Collapse
Affiliation(s)
- Karina L. Hissen
- Comparative Immunogenetics Laboratory Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Wenliang He
- Amino Acid Laboratory, Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Guoyao Wu
- Amino Acid Laboratory, Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Michael F. Criscitiello
- Comparative Immunogenetics Laboratory Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
2
|
Liu Y, Chen S, Liu S, Wallace KL, Zille M, Zhang J, Wang J, Jiang C. T-cell receptor signaling modulated by the co-receptors: Potential targets for stroke treatment. Pharmacol Res 2023; 192:106797. [PMID: 37211238 DOI: 10.1016/j.phrs.2023.106797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Stroke is a severe and life-threatening disease, necessitating more research on new treatment strategies. Infiltrated T lymphocytes, an essential adaptive immune cell with extensive effector function, are crucially involved in post-stroke inflammation. Immediately after the initiation of the innate immune response triggered by microglia/macrophages, the adaptive immune response associated with T lymphocytes also participates in the complex pathophysiology of stroke and partially informs the outcome of stroke. Preclinical and clinical studies have revealed the conflicting roles of T cells in post-stroke inflammation and as potential therapeutic targets. Therefore, exploring the mechanisms that underlie the adaptive immune response associated with T lymphocytes in stroke is essential. The T-cell receptor (TCR) and its downstream signaling regulate T lymphocyte differentiation and activation. This review comprehensively summarizes the various molecules that regulate TCR signaling and the T-cell response. It covers both the co-stimulatory and co-inhibitory molecules and their roles in stroke. Because immunoregulatory therapies targeting TCR and its mediators have achieved great success in some proliferative diseases, this article also summarizes the advances in therapeutic strategies related to TCR signaling in lymphocytes after stroke, which can facilitate translation. DATA AVAILABILITY: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Shuai Chen
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Simon Liu
- Medical Genomics Unit, National Human Genome Research Institute, Bethesda, MD, 20814, USA
| | - Kevin L Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, 450000, Zhengzhou, P. R. China.
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China; Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, P. R. China.
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| |
Collapse
|
3
|
Bowakim-Anta N, Acolty V, Azouz A, Yagita H, Leo O, Goriely S, Oldenhove G, Moser M. Chronic CD27-CD70 costimulation promotes type 1-specific polarization of effector Tregs. Front Immunol 2023; 14:1023064. [PMID: 36993956 PMCID: PMC10041113 DOI: 10.3389/fimmu.2023.1023064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionMost T lymphocytes, including regulatory T cells, express the CD27 costimulatory receptor in steady state conditions. There is evidence that CD27 engagement on conventional T lymphocytes favors the development of Th1 and cytotoxic responses in mice and humans, but the impact on the regulatory lineage is unknown.MethodsIn this report, we examined the effect of constitutive CD27 engagement on both regulatory and conventional CD4+ T cells in vivo, in the absence of intentional antigenic stimulation.ResultsOur data show that both T cell subsets polarize into type 1 Tconvs or Tregs, characterized by cell activation, cytokine production, response to IFN-γ and CXCR3-dependent migration to inflammatory sites. Transfer experiments suggest that CD27 engagement triggers Treg activation in a cell autonomous fashion.ConclusionWe conclude that CD27 may regulate the development of Th1 immunity in peripheral tissues as well as the subsequent switch of the effector response into long-term memory.
Collapse
Affiliation(s)
- Natalia Bowakim-Anta
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Valérie Acolty
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology, Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Oberdan Leo
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stanislas Goriely
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Institute for Medical Immunology, Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Guillaume Oldenhove
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Muriel Moser
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- *Correspondence: Muriel Moser,
| |
Collapse
|
4
|
Ibañez-Vega J, Vilchez C, Jimenez K, Guevara C, Burgos PI, Naves R. Cellular and molecular regulation of the programmed death-1/programmed death ligand system and its role in multiple sclerosis and other autoimmune diseases. J Autoimmun 2021; 123:102702. [PMID: 34311143 DOI: 10.1016/j.jaut.2021.102702] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 01/12/2023]
Abstract
Programmed Cell Death 1 (PD-1) receptor and its ligands (PD-Ls) are essential to maintain peripheral immune tolerance and to avoid tissue damage. Consequently, altered gene or protein expression of this system of co-inhibitory molecules has been involved in the development of cancer and autoimmunity. Substantial progress has been achieved in the study of the PD-1/PD-Ls system in terms of regulatory mechanisms and therapy. However, the role of the PD-1/PD-Ls pathway in neuroinflammation has been less explored despite being a potential target of treatment for neurodegenerative diseases. Multiple Sclerosis (MS) is the most prevalent, chronic, inflammatory, and autoimmune disease of the central nervous system that leads to demyelination and axonal damage in young adults. Recent studies have highlighted the key role of the PD-1/PD-Ls pathway in inducing a neuroprotective response and restraining T cell activation and neurodegeneration in MS. In this review, we outline the molecular and cellular mechanisms regulating gene expression, protein synthesis and traffic of PD-1/PD-Ls as well as relevant processes that control PD-1/PD-Ls engagement in the immunological synapse between antigen-presenting cells and T cells. Also, we highlight the most recent findings regarding the role of the PD-1/PD-Ls pathway in MS and its murine model, experimental autoimmune encephalomyelitis (EAE), including the contribution of PD-1 expressing follicular helper T (TFH) cells in the pathogenesis of these diseases. In addition, we compare and contrast results found in MS and EAE with evidence reported in other autoimmune diseases and their experimental models, and review PD-1/PD-Ls-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Jorge Ibañez-Vega
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Constanza Vilchez
- Faculty of Natural Sciences, Mathematics and Environment, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Karin Jimenez
- Faculty of Natural Sciences, Mathematics and Environment, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Carlos Guevara
- Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Paula I Burgos
- Department of Clinical Immunology and Rheumatology, School of Medicine, Pontificia Universidad Católica de Chile, Chile.
| | - Rodrigo Naves
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|