1
|
Bhardwaj S, Kumar A. Analytical Model to Deduce the Conformational and Dynamical Behavior in Dendrimers: A Review. Polymers (Basel) 2024; 16:1918. [PMID: 39000773 PMCID: PMC11244006 DOI: 10.3390/polym16131918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
This review utilizes an optimized Rouse-Zimm discrete hydrodynamic model and the preaveraged Oseen tensor, which accurately consider hydrodynamic interactions to study model dendrimers. We report the analytical theories that have been previously developed for the creation of generalized analytical models for dendrimers. These generalized theories were used to assess the conformational and dynamical behavior of the dendrimers. By including stiffness in the bonds, the neglect of excluded volume interactions may be somewhat offset. This is true at least in the case of short spacers. While the topological limitations on the directions and orientations of the individual bond vectors in dendrimers implement semiflexibility, the intensity of these contacts was determined by the potential geometric orientations of the bonds, and later on the excluded volume interactions in dendrimers, which were described in terms of the effective co-volume between nearest non-bonded monomers and modeled using the delta function pseudopotential. With the aid of the models developed, the authors condensed various conformational and dynamic properties of dendrimers that depend on their degree of semiflexibility and the strength of the excluded volume. These analyses came to the conclusion that the flexible dendrimer in one limit and the earlier described freely rotating model of dendrimers in the other constitute a highly generalized way of capturing a wide range of conformations in the developed mathematical model in dendrimers.
Collapse
Affiliation(s)
| | - Amit Kumar
- Theory & Simulation Laboratory, Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
2
|
Kumar S, Biswas P. Intrinsic viscosity and dielectric relaxation of ring polymers in dilute solutions. J Chem Phys 2023; 159:164902. [PMID: 37870141 DOI: 10.1063/5.0169880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
The absence of chain ends makes ring polymers distinctly different from their linear analogues. The intrinsic viscosity, complex viscosity and the dielectric relaxation of ring polymers are investigated within the tenets of the optimized Rouse-Zimm theory. The distance dependent excluded volume interactions (EVIs) are obtained from Flory's mean field theory. The hydrodynamic interactions (HIs) between the pairs of monomers are estimated using the preaveraged Oseen tensor. The intrinsic viscosity of linear and ring polymers both with and without EVI are compared as a function of ring size. A monotonically increasing trend of the intrinsic viscosity is observed in both cases. The intrinsic viscosity of both linear and ring polymers both with and without EVI show a very good agreement with the experimental results of polystyrene over a wide range of molecular weights in both good and theta solvents, respectively. The fractal dimensions of the ring polymers with EVI lie between that of a random walk and a self-avoiding walk model of linear polymers in three dimensions. The ring size increases with EVI and the effect of EVI is stronger on larger rings than that on smaller rings. The dielectric relaxation follow a connectivity independent universal scaling behavior at low and high frequency regions. The imaginary part of the complex dielectric susceptibility displays a local maxima in the intermediate frequency region, which reveals a structure dependent behavior of the rings. The theoretically calculated dielectric loss of ring polymers with HI matches well with those obtained from experiments.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
3
|
Song J, Holten-Andersen N, McKinley GH. Non-Maxwellian viscoelastic stress relaxations in soft matter. SOFT MATTER 2023; 19:7885-7906. [PMID: 37846782 DOI: 10.1039/d3sm00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Viscoelastic stress relaxation is a basic characteristic of soft matter systems such as colloids, gels, and biological networks. Although the Maxwell model of linear viscoelasticity provides a classical description of stress relaxation, it is often not sufficient for capturing the complex relaxation dynamics of soft matter. In this Tutorial, we introduce and discuss the physics of non-Maxwellian linear stress relaxation as observed in soft materials, the ascribed origins of this effect in different systems, and appropriate models that can be used to capture this relaxation behavior. We provide a basic toolkit that can assist the understanding and modeling of the mechanical relaxation of soft materials for diverse applications.
Collapse
Affiliation(s)
- Jake Song
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Niels Holten-Andersen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Gareth H McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Xiong ZQ, Yu W. Sliding Dynamics of Slide-Ring Polymers Based on the Bead-Spring Model. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Sheveleva NN, Komolkin AV, Markelov DA. Influence of the Chemical Structure on the Mechanical Relaxation of Dendrimers. Polymers (Basel) 2023; 15:polym15040833. [PMID: 36850117 PMCID: PMC9965359 DOI: 10.3390/polym15040833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
The rheological properties of macromolecules represent one of the fundamental features of polymer systems which expand the possibilities of using and developing new materials based on them. In this work, we studied the shear-stress relaxation of the second generation PAMAM and PPI dendrimer melts by atomistic molecular dynamics simulation. The time dependences of relaxation modulus G(t) and the frequency dependences of the storage G'(ω) and loss G″(ω) moduli were obtained. The results were compared with the similar dependences for the polycarbosilane (PCS) dendrimer of the same generation. The chemical structure of the dendrimer segments has been found to strongly influence their mechanical relaxation. In particular, it has been shown that hydrogen bonding in PAMAM dendrimers leads to an entanglement of macromolecules and the region is observed where G'(ω) > G″(ω). This slows down the mechanical relaxation and rotational diffusion of macromolecules. We believe that our comprehensive research contributes to the systematization of knowledge about the rheological properties of dendrimers.
Collapse
|
6
|
Affiliation(s)
- Gaoyuan Wang
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Combined Molecular Dynamics Simulation and Rouse Model Analysis of Static and Dynamic Properties of Unentangled Polymer Melts with Different Chain Architectures. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2489-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ganazzoli F, Raffaini G. Dendrimer Dynamics: A Review of Analytical Theories and Molecular Simulation Methods. Polymers (Basel) 2020; 12:polym12061387. [PMID: 32575767 PMCID: PMC7361973 DOI: 10.3390/polym12061387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022] Open
Abstract
The theoretical study of dendrimers is reviewed, considering both analytical approaches and molecular simulation methods. We discuss the effect of molecular symmetry on the degeneracy of the relaxation times, and then the calculation of observable quantities, in particular the intrinsic viscosity, and then the viscoelastic complex modulus and the dynamic structure factor, in comparison with the available experimental data. In particular, the maximum intrinsic viscosity with increasing molar mass is analyzed in some detail. The approximations and/or assumptions of the adopted methods are also described in connection with analogous results for polymer of a different topology, in particular linear and star polymers.
Collapse
|
9
|
Adroher-Benítez I, Rosa A. Randomly branching θ-polymers in two and three dimensions: Average properties and distribution functions. J Chem Phys 2020; 152:114903. [DOI: 10.1063/1.5142838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Irene Adroher-Benítez
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Angelo Rosa
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
10
|
Oliveira ES, Galiceanu ACAM, Jurjiu A, Galiceanu M. Relaxation dynamics of semiflexible treelike small-world polymer networks. Phys Rev E 2019; 100:022501. [PMID: 31574720 DOI: 10.1103/physreve.100.022501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Indexed: 11/07/2022]
Abstract
We study the relaxation dynamics of the polymer networks that are constructed based on a degree distribution specific to small-world networks. The employed building algorithm generates polymers with a large variety of architectures, thus allowing for a detailed study of the structural transition from a pure linear chain to dendritic polymer networks. This is done by varying a single parameter p, which measures the randomness in the degree of the network's nodes. The dynamics is investigated in the framework of the generalized Gaussian structures model by monitoring the influence of the parameter p and of the stiffness parameter q on the behavior of the relaxation quantities: averaged monomer displacement, storage modulus, and loss modulus. The structure properties of the constructed polymers are described by the mean-square radius of gyration. In the absence of stiffness, in the intermediate frequencies domain of the dynamical quantities we encounter different behaviours, such as a dendritic behavior followed by a linear one for very small values of p or a single well-marked dendritic behavior for higher values of p. The stiffness parameter q influences drastically the relaxation dynamics of these polymer networks and in general no evident scaling regions were encountered. However, for some values of the parameter set (p,q), such as (0.8,0.4), an extremely short constant slope region, less than one order of magnitude, was found.
Collapse
Affiliation(s)
- Edieliton S Oliveira
- Departamento de Fisica, Universidade Federal do Amazonas, 69077-000 Manaus, Brazil
| | | | - Aurel Jurjiu
- Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Mircea Galiceanu
- Departamento de Física, Universidade Federal do Amazonas, 69077-000 Manaus, Brazil
| |
Collapse
|
11
|
Affiliation(s)
- Michael Lang
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
12
|
Jurjiu A, Galiceanu M. Dynamics of a Polymer Network Modeled by a Fractal Cactus. Polymers (Basel) 2018; 10:E787. [PMID: 30960712 PMCID: PMC6403701 DOI: 10.3390/polym10070787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 01/16/2023] Open
Abstract
In this paper, we focus on the relaxation dynamics of a polymer network modeled by a fractal cactus. We perform our study in the framework of the generalized Gaussian structure model using both Rouse and Zimm approaches. By performing real-space renormalization transformations, we determine analytically the whole eigenvalue spectrum of the connectivity matrix, thereby rendering possible the analysis of the Rouse-dynamics at very large generations of the structure. The evaluation of the structural and dynamical properties of the fractal network in the Rouse type-approach reveals that they obey scaling and the dynamics is governed by the value of spectral dimension. In the Zimm-type approach, the relaxation quantities show a strong dependence on the strength of the hydrodynamic interaction. For low and medium hydrodynamic interactions, the relaxation quantities do not obey power law behavior, while for slightly larger interactions they do. Under strong hydrodynamic interactions, the storage modulus does not follow power law behavior and the average displacement of the monomer is very low. Remarkably, the theoretical findings with respect to scaling in the intermediate domain of the relaxation quantities are well supported by experimental results from the literature.
Collapse
Affiliation(s)
- Aurel Jurjiu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca 400293, Romania.
- Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, Cluj-Napoca 400084, Romania.
| | - Mircea Galiceanu
- Department of Physics, Federal University of Amazonas, Manaus 69077-000, Brazil.
| |
Collapse
|
13
|
|
14
|
|
15
|
Jurjiu A, Gomes Maia Júnior D, Galiceanu M. Relaxation dynamics of generalized scale-free polymer networks. Sci Rep 2018; 8:3731. [PMID: 29487316 PMCID: PMC5829225 DOI: 10.1038/s41598-018-21968-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/13/2018] [Indexed: 11/25/2022] Open
Abstract
We focus on treelike generalized scale-free polymer networks, whose geometries depend on a parameter, γ, that controls their connectivity and on two modularity parameters: the minimum allowed degree, Kmin, and the maximum allowed degree, Kmax. We monitor the influence of these parameters on the static and dynamic properties of the achieved generalized scale-free polymer networks. The relaxation dynamics is studied in the framework of generalized Gaussian structures model by employing the Rouse-type approach. The dynamical quantities on which we focus are the average monomer displacement under external forces and the mechanical relaxation moduli (storage and loss modulus), while for the static and structure properties of these networks we concentrate on the eigenvalue spectrum, diameter, and degree correlations. Depending on the values of network’s parameters we were able to switch between distinct hyperbranched structures: networks with more linearlike segments or with a predominant star or dendrimerlike topology. We have observed a stronger influence on Kmin than on Kmax. In the intermediate time (frequency) domain, all physical quantities obey power-laws for polymer networks with γ = 2.5 and Kmin = 2 and we prove additionally that for networks with γ ≥ 2.5 new regions with constant slope emerge by a proper choice of Kmin. Remarkably, we show that for certain values of the parameter set one may obtain self-similar networks.
Collapse
Affiliation(s)
- Aurel Jurjiu
- Department of Condensed Matter Physics and Advanced Technologies, Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084, Cluj-Napoca, Romania.
| | | | - Mircea Galiceanu
- Departamento de Física, Universidade Federal do Amazonas, 69077-000, Manaus, Brazil.
| |
Collapse
|
16
|
Jurjiu A, Turcu F, Galiceanu M. Dynamics of a Complex Multilayer Polymer Network: Mechanical Relaxation and Energy Transfer. Polymers (Basel) 2018; 10:E164. [PMID: 30966200 PMCID: PMC6415159 DOI: 10.3390/polym10020164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 01/12/2023] Open
Abstract
In this paper, we focus on the mechanical relaxation of a multilayer polymer network built by connecting identical layers that have, as underlying topologies, the dual Sierpinski gasket and the regular dendrimer. Additionally, we analyze the dynamics of dipolar energy transfer over a system of chromophores arranged in the form of a multilayer network. Both dynamical processes are studied in the framework of the generalized Gaussian structure (GSS) model. We develop a method whereby the whole eigenvalue spectrum of the connectivity matrix of the multilayer network can be determined iteratively, thereby rendering possible the analysis of the dynamics of networks consisting of a large number of layers. This fact allows us to study in detail the crossover from layer-like behavior to chain-like behavior. Remarkably, we highlight the existence of two bulk-like behaviors. The theoretical findings with respect to the decomposition of the intermediate domain of the relaxation quantities, as well as the chain-like behavior, are well supported by experimental results.
Collapse
Affiliation(s)
- Aurel Jurjiu
- Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania.
| | - Flaviu Turcu
- Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania.
| | - Mircea Galiceanu
- Department of Physics, Federal University of Amazonas, 69077-000 Manaus, Brazil.
| |
Collapse
|
17
|
Dolgushev M, Hauber AL, Pelagejcev P, Wittmer JP. Marginally compact fractal trees with semiflexibility. Phys Rev E 2018; 96:012501. [PMID: 29347244 DOI: 10.1103/physreve.96.012501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 11/07/2022]
Abstract
We study marginally compact macromolecular trees that are created by means of two different fractal generators. In doing so, we assume Gaussian statistics for the vectors connecting nodes of the trees. Moreover, we introduce bond-bond correlations that make the trees locally semiflexible. The symmetry of the structures allows an iterative construction of full sets of eigenmodes (notwithstanding the additional interactions that are present due to semiflexibility constraints), enabling us to get physical insights about the trees' behavior and to consider larger structures. Due to the local stiffness, the self-contact density gets drastically reduced.
Collapse
Affiliation(s)
- Maxim Dolgushev
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany.,Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - Adrian L Hauber
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany
| | - Philipp Pelagejcev
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany
| | - Joachim P Wittmer
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| |
Collapse
|
18
|
Galiceanu M, Tota de Carvalho L, Mülken O, Dolgushev M. Dynamics of Dual Scale-Free Polymer Networks. Polymers (Basel) 2017; 9:E577. [PMID: 30965880 PMCID: PMC6418598 DOI: 10.3390/polym9110577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 01/31/2023] Open
Abstract
We focus on macromolecules which are modeled as sequentially growing dual scale-free networks. The dual networks are built by replacing star-like units of the primal treelike scale-free networks through rings, which are then transformed in a small-world manner up to the complete graphs. In this respect, the parameter γ describing the degree distribution in the primal treelike scale-free networks regulates the size of the dual units. The transition towards the networks of complete graphs is controlled by the probability p of adding a link between non-neighboring nodes of the same initial ring. The relaxation dynamics of the polymer networks is studied in the framework of generalized Gaussian structures by using the full eigenvalue spectrum of the Laplacian matrix. The dynamical quantities on which we focus here are the averaged monomer displacement and the mechanical relaxation moduli. For several intermediate values of the parameters' set ( γ , p ) , we encounter for these dynamical properties regions of constant in-between slope.
Collapse
Affiliation(s)
- Mircea Galiceanu
- Departamento de Fisica, Universidade Federal do Amazonas, Manaus 69077-000, Brazil.
| | | | - Oliver Mülken
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany.
| | - Maxim Dolgushev
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany.
| |
Collapse
|
19
|
Shukron O, Hauer M, Holcman D. Two loci single particle trajectories analysis: constructing a first passage time statistics of local chromatin exploration. Sci Rep 2017; 7:10346. [PMID: 28871173 PMCID: PMC5583259 DOI: 10.1038/s41598-017-10842-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022] Open
Abstract
Stochastic single particle trajectories are used to explore the local chromatin organization. We present here a statistical analysis of the first contact time distributions between two tagged loci recorded experimentally. First, we extract the association and dissociation times from data for various genomic distances between loci, and we show that the looping time occurs in confined nanometer regions. Second, we characterize the looping time distribution for two loci in the presence of multiple DNA damages. Finally, we construct a polymer model, that accounts for the local chromatin organization before and after a double-stranded DNA break (DSB), to estimate the level of chromatin decompaction. This novel passage time statistics method allows extracting transient dynamic at scales varying from one to few hundreds of nanometers, it predicts the local changes in the number of binding molecules following DSB and can be used to characterize the local dynamic of the chromatin.
Collapse
Affiliation(s)
- Ofir Shukron
- Applied Mathematics and Computational Biology, Ecole Normale Supérieure, IBENS, 46 rue d'Ulm, 75005, Paris, France
| | - Michael Hauer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - David Holcman
- Applied Mathematics and Computational Biology, Ecole Normale Supérieure, IBENS, 46 rue d'Ulm, 75005, Paris, France. .,Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom.
| |
Collapse
|
20
|
Jurjiu A, Biter TL, Turcu F. Dynamics of a Polymer Network Based on Dual Sierpinski Gasket and Dendrimer: A Theoretical Approach. Polymers (Basel) 2017; 9:E245. [PMID: 30970922 PMCID: PMC6432022 DOI: 10.3390/polym9070245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/17/2017] [Accepted: 06/21/2017] [Indexed: 11/16/2022] Open
Abstract
In this paper we focus on the relaxation dynamics of a multihierarchical polymer network built through the replication of the dual Sierpinski gasket in the form of a regular dendrimer. The relaxation dynamics of this multihierarchical structure is investigated in the framework of the generalized Gaussian structure model using both Rouse and Zimm approaches. In the Rouse-type approach, we show a method whereby the whole eigenvalue spectrum of the connectivity matrix of the multihierarchical structure can be determined iteratively, thereby rendering possible the analysis of the Rouse-dynamics at very large generations. Remarkably, the general picture that emerges from both approaches, even though we have a mixed growth algorithm and the monomers interactions are taken into account specifically to the adopted approach, is that the multihierarchical structure preserves the individual relaxation behaviors of its constituent components. The theoretical findings with respect to the splitting of the intermediate domain of the relaxation quantities are well supported by experimental results.
Collapse
Affiliation(s)
- Aurel Jurjiu
- Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania.
| | - Teodor-Lucian Biter
- Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania.
| | - Flaviu Turcu
- Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania.
| |
Collapse
|
21
|
Dolgushev M, Wittmer JP, Johner A, Benzerara O, Meyer H, Baschnagel J. Marginally compact hyperbranched polymer trees. SOFT MATTER 2017; 13:2499-2512. [PMID: 28304066 DOI: 10.1039/c7sm00243b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Assuming Gaussian chain statistics along the chain contour, we generate by means of a proper fractal generator hyperbranched polymer trees which are marginally compact. Static and dynamical properties, such as the radial intrachain pair density distribution ρpair(r) or the shear-stress relaxation modulus G(t), are investigated theoretically and by means of computer simulations. We emphasize that albeit the self-contact density diverges logarithmically with the total mass N, this effect becomes rapidly irrelevant with increasing spacer length S. In addition to this it is seen that the standard Rouse analysis must necessarily become inappropriate for compact objects for which the relaxation time τp of mode p must scale as τp ∼ (N/p)5/3 rather than the usual square power law for linear chains.
Collapse
Affiliation(s)
- M Dolgushev
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany and Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France.
| | - J P Wittmer
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France.
| | - A Johner
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France.
| | - O Benzerara
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France.
| | - H Meyer
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France.
| | - J Baschnagel
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France.
| |
Collapse
|
22
|
Jurjiu A, Biter TL, Turcu F. Relaxation dynamics of a multihierarchical polymer network. J Chem Phys 2017; 146:034902. [PMID: 28109236 DOI: 10.1063/1.4973936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this work, we study the relaxation dynamics of a multihierarchical polymer network built by replicating the Vicsek fractal in dendrimer shape. The relaxation dynamics is investigated in the framework of the generalized Gaussian structure model by employing both Rouse and Zimm approaches. In the Rouse-type approach, we show the iterative procedure whereby the whole eigenvalue spectrum of the connectivity matrix of the multihierarchical structure can be obtained. Remarkably, the general picture that emerges from both approaches, even though we have a mixed growth algorithm, is that the obtained multihierarchical structure preserves the individual relaxation behaviors of its components. The theoretical findings with respect to the splitting of the intermediate domain of the relaxation quantities are well supported by experimental results.
Collapse
Affiliation(s)
- Aurel Jurjiu
- Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Teodor Lucian Biter
- Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Flaviu Turcu
- Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
23
|
Katyal D, Kant R. Dynamics of comb-of-comb-network polymers in random layered flows. Phys Rev E 2017; 94:062503. [PMID: 28085413 DOI: 10.1103/physreve.94.062503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 11/07/2022]
Abstract
We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength W_{α}. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν=2-α/2. Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t^{-α/2}. We show that the network with greater total mass moves faster.
Collapse
Affiliation(s)
- Divya Katyal
- Complex Systems Group, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rama Kant
- Complex Systems Group, Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
24
|
Agliari E, Tavani F. The exact Laplacian spectrum for the Dyson hierarchical network. Sci Rep 2017; 7:39962. [PMID: 28067261 PMCID: PMC5220329 DOI: 10.1038/srep39962] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/30/2016] [Indexed: 11/27/2022] Open
Abstract
We consider the Dyson hierarchical graph , that is a weighted fully-connected graph, where the pattern of weights is ruled by the parameter σ ∈ (1/2, 1]. Exploiting the deterministic recursivity through which is built, we are able to derive explicitly the whole set of the eigenvalues and the eigenvectors for its Laplacian matrix. Given that the Laplacian operator is intrinsically implied in the analysis of dynamic processes (e.g., random walks) occurring on the graph, as well as in the investigation of the dynamical properties of connected structures themselves (e.g., vibrational structures and relaxation modes), this result allows addressing analytically a large class of problems. In particular, as examples of applications, we study the random walk and the continuous-time quantum walk embedded in , the relaxation times of a polymer whose structure is described by , and the community structure of in terms of modularity measures.
Collapse
Affiliation(s)
- Elena Agliari
- Dipartimento di Matematica, Sapienza Università di Roma, P. le A. Moro 5, 00185, Roma, Italy
| | - Flavia Tavani
- Dipartimento SBAI (Ingegneria), Sapienza Università di Roma, via A. Scarpa 16, 00161, Roma, Italy
| |
Collapse
|
25
|
Jurjiu A, Galiceanu M, Farcasanu A, Chiriac L, Turcu F. Relaxation dynamics of Sierpinski hexagon fractal polymer: Exact analytical results in the Rouse-type approach and numerical results in the Zimm-type approach. J Chem Phys 2016; 145:214901. [PMID: 28799361 DOI: 10.1063/1.4968209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we focus on the relaxation dynamics of Sierpinski hexagon fractal polymer. The relaxation dynamics of this fractal polymer is investigated in the framework of the generalized Gaussian structure model using both Rouse and Zimm approaches. In the Rouse-type approach, by performing real-space renormalization transformations, we determine analytically the complete eigenvalue spectrum of the connectivity matrix. Based on the eigenvalues obtained through iterative algebraic relations we calculate the averaged monomer displacement and the mechanical relaxation moduli (storage modulus and loss modulus). The evaluation of the dynamical properties in the Rouse-type approach reveals that they obey scaling in the intermediate time/frequency domain. In the Zimm-type approach, which includes the hydrodynamic interactions, the relaxation quantities do not show scaling. The theoretical findings with respect to scaling in the intermediate domain of the relaxation quantities are well supported by experimental results.
Collapse
Affiliation(s)
- Aurel Jurjiu
- Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Mircea Galiceanu
- Departamento de Fisica, Universidade Federal do Amazonas, 69077-000 Manaus, Brazil
| | - Alexandru Farcasanu
- Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Liviu Chiriac
- Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Flaviu Turcu
- Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
26
|
Schubert C, Osterwinter C, Tonhauser C, Schömer M, Wilms D, Frey H, Friedrich C. Can Hyperbranched Polymers Entangle? Effect of Hydrogen Bonding on Entanglement Transition and Thermorheological Properties of Hyperbranched Polyglycerol Melts. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00674] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Christian Schubert
- Freiburg
Materials Research Center (FMF), and Institute of Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Institute
of Organic Chemistry, Organic and Macromolecular Chemistry, University of Mainz, Mainz, Germany
| | - Carina Osterwinter
- Freiburg
Materials Research Center (FMF), and Institute of Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
| | - Christoph Tonhauser
- Institute
of Organic Chemistry, Organic and Macromolecular Chemistry, University of Mainz, Mainz, Germany
| | - Martina Schömer
- Institute
of Organic Chemistry, Organic and Macromolecular Chemistry, University of Mainz, Mainz, Germany
| | - Daniel Wilms
- Institute
of Organic Chemistry, Organic and Macromolecular Chemistry, University of Mainz, Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Organic and Macromolecular Chemistry, University of Mainz, Mainz, Germany
| | - Christian Friedrich
- Freiburg
Materials Research Center (FMF), and Institute of Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Dolgushev M, Liu H, Zhang Z. Extended Vicsek fractals: Laplacian spectra and their applications. Phys Rev E 2016; 94:052501. [PMID: 27967151 DOI: 10.1103/physreve.94.052501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Extended Vicsek fractals (EVF) are the structures constructed by introducing linear spacers into traditional Vicsek fractals. Here we study the Laplacian spectra of the EVF. In particularly, the recurrence relations for the Laplacian spectra allow us to obtain an analytic expression for the sum of all inverse nonvanishing Laplacian eigenvalues. This quantity characterizes the large-scale properties, such as the gyration radius of the polymeric structures, or the global mean-first passage time for the random walk processes. Introduction of the linear spacers leads to local heterogeneities, which reveal themselves, for example, in the dynamics of EVF under external forces.
Collapse
Affiliation(s)
- Maxim Dolgushev
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany
- Institut Charles Sadron, Université de Strasbourg and CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - Hongxiao Liu
- School of Computer Science, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| | - Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| |
Collapse
|
28
|
Galiceanu M, Jurjiu A. Relaxation dynamics of multilayer triangular Husimi cacti. J Chem Phys 2016; 145:104901. [DOI: 10.1063/1.4962196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Dolgushev M, Markelov DA, Fürstenberg F, Guérin T. Local orientational mobility in regular hyperbranched polymers. Phys Rev E 2016; 94:012502. [PMID: 27575171 DOI: 10.1103/physreve.94.012502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 11/07/2022]
Abstract
We study the dynamics of local bond orientation in regular hyperbranched polymers modeled by Vicsek fractals. The local dynamics is investigated through the temporal autocorrelation functions of single bonds and the corresponding relaxation forms of the complex dielectric susceptibility. We show that the dynamic behavior of single segments depends on their remoteness from the periphery rather than on the size of the whole macromolecule. Remarkably, the dynamics of the core segments (which are most remote from the periphery) shows a scaling behavior that differs from the dynamics obtained after structural average. We analyze the most relevant processes of single segment motion and provide an analytic approximation for the corresponding relaxation times. Furthermore, we describe an iterative method to calculate the orientational dynamics in the case of very large macromolecular sizes.
Collapse
Affiliation(s)
- Maxim Dolgushev
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany.,Institut Charles Sadron, Université de Strasbourg and CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - Denis A Markelov
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia.,St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg, 197101, Russia
| | - Florian Fürstenberg
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Thomas Guérin
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), CNRS UMR 5798, Talence, France
| |
Collapse
|
30
|
Abstract
The internally functionalized dendrimers are novel polymers that differ from conventional dendrimers by having additional functional units which do not branch out further. We investigate the dynamics of these structures with the inclusion of local semiflexibility and analyze their eigenmodes. The functionalized units clearly manifest themselves leading to a group of eigenvalues which are not present for homogeneous dendrimers. This part of the spectrum reveals itself in the local relaxation, leading to a corresponding process in the imaginary part of the complex dielectric susceptibility.
Collapse
Affiliation(s)
- Jonas Grimm
- Institute of Physics, University of Freiburg, Hermann-Herder-Str.3, D-79104 Freiburg, Germany.
| | | |
Collapse
|
31
|
Karalus S, Krug J. Reconstruction of evolved dynamic networks from degree correlations. Phys Rev E 2016; 93:062306. [PMID: 27415279 DOI: 10.1103/physreve.93.062306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Indexed: 06/06/2023]
Abstract
We study the importance of local structural properties in networks which have been evolved for a power-law scaling in their Laplacian spectrum. To this end, the degree distribution, two-point degree correlations, and degree-dependent clustering are extracted from the evolved networks and used to construct random networks with the prescribed distributions. In the analysis of these reconstructed networks it turns out that the degree distribution alone is not sufficient to generate the spectral scaling and the degree-dependent clustering has only an indirect influence. The two-point correlations are found to be the dominant characteristic for the power-law scaling over a broader eigenvalue range.
Collapse
Affiliation(s)
- Steffen Karalus
- Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany
| | - Joachim Krug
- Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany
| |
Collapse
|
32
|
Liu H, Lin Y, Dolgushev M, Zhang Z. Dynamics of comb-of-comb networks. Phys Rev E 2016; 93:032502. [PMID: 27078400 DOI: 10.1103/physreve.93.032502] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 11/07/2022]
Abstract
The dynamics of complex networks, a current hot topic in many scientific fields, is often coded through the corresponding Laplacian matrix. The spectrum of this matrix carries the main features of the networks' dynamics. Here we consider the deterministic networks which can be viewed as "comb-of-comb" iterative structures. For their Laplacian spectra we find analytical equations involving Chebyshev polynomials whose properties allow one to analyze the spectra in deep. Here, in particular, we find that in the infinite size limit the corresponding spectral dimension goes as d(s) → 2. The d(s) leaves its fingerprint on many dynamical processes, as we exemplarily show by considering the dynamical properties of polymer networks, including single monomer displacement under a constant force, mechanical relaxation, and fluorescence depolarization.
Collapse
Affiliation(s)
- Hongxiao Liu
- School of Computer Science, Fudan University, Shanghai 200433, China.,Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| | - Yuan Lin
- School of Computer Science, Fudan University, Shanghai 200433, China.,Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| | - Maxim Dolgushev
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany.,Institut Charles Sadron, Université de Strasbourg and CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China.,Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| |
Collapse
|
33
|
Zhang Z, Li H, Yi Y. Anomalous behavior of trapping in extended dendrimers with a perfect trap. J Chem Phys 2015; 143:064901. [PMID: 26277160 DOI: 10.1063/1.4927473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Compact and extended dendrimers are two important classes of dendritic polymers. The impact of the underlying structure of compact dendrimers on dynamical processes has been much studied, yet the relation between the dynamical and structural properties of extended dendrimers remains not well understood. In this paper, we study the trapping problem in extended dendrimers with generation-dependent segment lengths, which is different from that of compact dendrimers where the length of the linear segments is fixed. We first consider a particular case that the deep trap is located at the central node, and derive an exact formula for the average trapping time (ATT) defined as the average of the source-to-trap mean first passage time over all starting points. Then, using the obtained result we deduce a closed-form expression for the ATT to an arbitrary trap node, based on which we further obtain an explicit solution to the ATT corresponding to the trapping issue with the trap uniformly distributed in the polymer systems. We show that the trap location has a substantial influence on the trapping efficiency measured by the ATT, which increases with the shortest distance from the trap to the central node, a phenomenon similar to that for compact dendrimers. In contrast to this resemblance, the leading terms of ATTs for the three trapping problems differ drastically between extended and compact dendrimers, with the trapping processes in the extended dendrimers being less efficient than in compact dendrimers.
Collapse
Affiliation(s)
- Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China
| | - Huan Li
- School of Computer Science, Fudan University, Shanghai 200433, China
| | - Yuhao Yi
- School of Computer Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
34
|
Koda SI. Equivalence between a generalized dendritic network and a set of one-dimensional networks as a ground of linear dynamics. J Chem Phys 2015; 142:204112. [PMID: 26026439 DOI: 10.1063/1.4921730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It has been shown by some existing studies that some linear dynamical systems defined on a dendritic network are equivalent to those defined on a set of one-dimensional networks in special cases and this transformation to the simple picture, which we call linear chain (LC) decomposition, has a significant advantage in understanding properties of dendrimers. In this paper, we expand the class of LC decomposable system with some generalizations. In addition, we propose two general sufficient conditions for LC decomposability with a procedure to systematically realize the LC decomposition. Some examples of LC decomposable linear dynamical systems are also presented with their graphs. The generalization of the LC decomposition is implemented in the following three aspects: (i) the type of linear operators; (ii) the shape of dendritic networks on which linear operators are defined; and (iii) the type of symmetry operations representing the symmetry of the systems. In the generalization (iii), symmetry groups that represent the symmetry of dendritic systems are defined. The LC decomposition is realized by changing the basis of a linear operator defined on a dendritic network into bases of irreducible representations of the symmetry group. The achievement of this paper makes it easier to utilize the LC decomposition in various cases. This may lead to a further understanding of the relation between structure and functions of dendrimers in future studies.
Collapse
Affiliation(s)
- Shin-ichi Koda
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| |
Collapse
|
35
|
Katyal D, Kant R. Dynamics of generalized Gaussian polymeric structures in random layered flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042602. [PMID: 25974520 DOI: 10.1103/physreve.91.042602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Indexed: 06/04/2023]
Abstract
We develop a formalism for the dynamics of a flexible branched polymer with arbitrary topology in the presence of random flows. This is achieved by employing the generalized Gaussian structure (GGS) approach and the Matheron-de Marsily model for the random layered flow. The expression for the average square displacement (ASD) of the center of mass of the GGS is obtained in such flow. The averaging is done over both the thermal noise and the external random flow. Although the formalism is valid for branched polymers with various complex topologies, we mainly focus here on the dynamics of the flexible star and dendrimer. We analyze the effect of the topology (the number and length of branches for stars and the number of generations for dendrimers) on the dynamics under the influence of external flow, which is characterized by their root-mean-square velocity, persistence flow length, and flow exponent α. Our analysis shows two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The influence of the topology of the GGS is unraveled in the intermediate-time regime, while the long-time regime is only weakly dependent on the topology of the polymer. With the decrease in the value of α, the magnitude of the ASD decreases, while the temporal exponent of the ASD increases in both the time regimes. Also there is an increase in both the magnitude of the ASD and the crossover time (from the subdiffusive to the superdiffusive regime) with an increase in the total mass of the polymeric structure.
Collapse
Affiliation(s)
- Divya Katyal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rama Kant
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
36
|
Liu H, Dolgushev M, Qi Y, Zhang Z. Laplacian spectra of a class of small-world networks and their applications. Sci Rep 2015; 5:9024. [PMID: 25762195 PMCID: PMC4356965 DOI: 10.1038/srep09024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/12/2015] [Indexed: 02/05/2023] Open
Abstract
One of the most crucial domains of interdisciplinary research is the relationship between the dynamics and structural characteristics. In this paper, we introduce a family of small-world networks, parameterized through a variable d controlling the scale of graph completeness or of network clustering. We study the Laplacian eigenvalues of these networks, which are determined through analytic recursive equations. This allows us to analyze the spectra in depth and to determine the corresponding spectral dimension. Based on these results, we consider the networks in the framework of generalized Gaussian structures, whose physical behavior is exemplified on the relaxation dynamics and on the fluorescence depolarization under quasiresonant energy transfer. Although the networks have the same number of nodes (beads) and edges (springs) as the dual Sierpinski gaskets, they display rather different dynamic behavior.
Collapse
Affiliation(s)
- Hongxiao Liu
- 1] School of Computer Science, Fudan University, Shanghai 200433, China [2] Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| | - Maxim Dolgushev
- Theoretical Polymer Physics, University of Freiburg, Hermann-Herder-Str.3, D-79104 Freiburg, Germany
| | - Yi Qi
- 1] School of Computer Science, Fudan University, Shanghai 200433, China [2] Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| | - Zhongzhi Zhang
- 1] School of Computer Science, Fudan University, Shanghai 200433, China [2] Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| |
Collapse
|
37
|
Kolupaev BB, Klepko VV, Lebedev EV, Levchuk VV, Maksimtsev YR, Kolupaev BS. Contribution of thermal fluctuations to thermophysical properties of modified poly(vinyl chloride). POLYMER SCIENCE SERIES A 2015. [DOI: 10.1134/s0965545x15020078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Qi Y, Dolgushev M, Zhang Z. Dynamics of semiflexible recursive small-world polymer networks. Sci Rep 2014; 4:7576. [PMID: 25524793 PMCID: PMC4271264 DOI: 10.1038/srep07576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/02/2014] [Indexed: 11/09/2022] Open
Abstract
One of the fundamental issues in polymer physics is to reveal the relation between the structures of macromolecules and their various properties. In this report, we study the dynamical properties of a family of deterministically growing semiflexible treelike polymer networks, which are built in an iterative method. From the analysis of the corresponding dynamical matrix we derive the solution for its eigenvalues and their multiplicities, making use of a combined numerical and analytical approach. The eigenvalue spectra allow us to investigate the mechanical relaxation forms in depth for different values of the stiffness parameter. We observe that the dynamics of semiflexible networks is sensitive to the stiffness parameter. Our work paves a way to explore the structures of the highly symmetric polymers and provides a comprehensive understanding of the role of semiflexibility for the regular treelike networks which possess a small-world feature.
Collapse
Affiliation(s)
- Yi Qi
- 1] School of Computer Science, Fudan University, Shanghai 200433, China [2] Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| | - Maxim Dolgushev
- Theoretical Polymer Physics, University of Freiburg, Hermann-Herder-Str.3, D-79104 Freiburg, Germany
| | - Zhongzhi Zhang
- 1] School of Computer Science, Fudan University, Shanghai 200433, China [2] Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| |
Collapse
|
39
|
Fürstenberg F, Gurtovenko AA, Dolgushev M, Blumen A. Molecular Dynamics Simulations of Hyperbranched PAMAM Vicsek Fractals. MACROMOL THEOR SIMUL 2014. [DOI: 10.1002/mats.201400063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Florian Fürstenberg
- Theoretical Polymer Physics; University of Freiburg; Hermann-Herder-Str. 3 D-79104 Freiburg Germany
| | - Andrey A. Gurtovenko
- Institute of Macromolecular Compounds; Russian Academy of Sciences; Bolshoi pr. V.O. 31 St.Petersburg 199004 Russia
- Faculty of Physics; St.Petersburg State University; Ul'yanovskaya ul. 1 Petrodvorets St.Petersburg 198504 Russia
| | - Maxim Dolgushev
- Theoretical Polymer Physics; University of Freiburg; Hermann-Herder-Str. 3 D-79104 Freiburg Germany
| | - Alexander Blumen
- Theoretical Polymer Physics; University of Freiburg; Hermann-Herder-Str. 3 D-79104 Freiburg Germany
| |
Collapse
|
40
|
Jurjiu A, Dockhorn R, Mironova O, Sommer JU. Two universality classes for random hyperbranched polymers. SOFT MATTER 2014; 10:4935-4946. [PMID: 24882064 DOI: 10.1039/c4sm00711e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We grow AB2 random hyperbranched polymer structures in different ways and using different simulation methods. In particular we use a method of ad hoc construction of the connectivity matrix and the bond fluctuation model on a 3D lattice. We show that hyperbranched polymers split into two universality classes depending on the growth process. For a "slow growth" (SG) process where monomers are added sequentially to an existing molecule which strictly avoids cluster-cluster aggregation the resulting structures share all characteristic features with regular dendrimers. For a "quick growth" (QG) process which allows for cluster-cluster aggregation we obtain structures which can be identified as random fractals. Without excluded volume interactions the SG model displays a logarithmic growth of the radius of gyration with respect to the degree of polymerization while the QG model displays a power law behavior with an exponent of 1/4. By analyzing the spectral properties of the connectivity matrix we confirm the behavior of dendritic structures for the SG model and the corresponding fractal properties in the QG case. A mean field model is developed which explains the extension of the hyperbranched polymers in an athermal solvent for both cases. While the radius of gyration of the QG model shows a power-law behavior with the exponent value close to 4/5, the corresponding result for the SG model is a mixed logarithmic-power-law behavior. These different behaviors are confirmed by simulations using the bond fluctuation model. Our studies indicate that random sequential growth according to our SG model can be an alternative to the synthesis of perfect dendrimers.
Collapse
Affiliation(s)
- A Jurjiu
- Leibniz Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069, Dresden, Germany.
| | | | | | | |
Collapse
|
41
|
Dolgushev M, Guérin T, Blumen A, Bénichou O, Voituriez R. Gaussian semiflexible rings under angular and dihedral restrictions. J Chem Phys 2014; 141:014901. [PMID: 25005305 DOI: 10.1063/1.4885445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Semiflexible polymer rings whose bonds obey both angular and dihedral restrictions [M. Dolgushev and A. Blumen, J. Chem. Phys. 138, 204902 (2013)], are treated under exact closure constraints. This allows us to obtain semianalytic results for their dynamics, based on sets of Langevin equations. The dihedral restrictions clearly manifest themselves in the behavior of the mean-square monomer displacement. The determination of the equilibrium ring conformations shows that the dihedral constraints influence the ring curvature, leading to compact folded structures. The method for imposing such constraints in Gaussian systems is very general and it allows to account for heterogeneous (site-dependent) restrictions. We show it by considering rings in which one site differs from the others.
Collapse
Affiliation(s)
- Maxim Dolgushev
- Theoretical Polymer Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Thomas Guérin
- Laboratoire de Physique Théorique de la Matière Condensée, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
| | - Alexander Blumen
- Theoretical Polymer Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Olivier Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
42
|
Saphiannikova M, Toshchevikov V, Gazuz I, Petry F, Westermann S, Heinrich G. Multiscale Approach to Dynamic-Mechanical Analysis of Unfilled Rubbers. Macromolecules 2014. [DOI: 10.1021/ma501159u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marina Saphiannikova
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - Vladimir Toshchevikov
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - Igor Gazuz
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - Frank Petry
- Goodyear Innovation
Center Luxembourg, Avenue Gordon Smith, L-7750 Colmar-Berg, Luxembourg
| | - Stephan Westermann
- Goodyear Innovation
Center Luxembourg, Avenue Gordon Smith, L-7750 Colmar-Berg, Luxembourg
| | - Gert Heinrich
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| |
Collapse
|
43
|
Ivaneyko D, Toshchevikov V, Saphiannikova M, Heinrich G. Mechanical properties of magneto-sensitive elastomers: unification of the continuum-mechanics and microscopic theoretical approaches. SOFT MATTER 2014; 11:7627-38. [PMID: 24651971 DOI: 10.1039/c5sm01761k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new theoretical formalism is developed for the study of the mechanical behaviour of magneto-sensitive elastomers (MSEs) under a uniform external magnetic field. This formalism allows us to combine macroscopic continuum-mechanics and microscopic approaches for complex analysis of MSEs with different shapes and with different particle distributions. It is shown that starting from a model based on an explicit discrete particle distribution one can separate the magnetic field inside the MSE into two contributions: one which depends on the shape of the sample with finite size and the other, which depends on the local spatial particle distribution. The magneto-induced deformation and the change of elastic modulus are found to be either positive or negative, their dependences on the magnetic field being determined by a non-trivial interplay between these two contributions. Mechanical properties are studied for two opposite types of coupling between the particle distribution and the magneto-induced deformation: absence of elastic coupling and presence of strong affine coupling. Predictions of a new formalism are in a qualitative agreement with existing experimental data.
Collapse
Affiliation(s)
- Dmytro Ivaneyko
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | | | | | | |
Collapse
|
44
|
Galiceanu M. Hydrodynamic effects on scale-free polymer networks in external fields. J Chem Phys 2014; 140:034901. [DOI: 10.1063/1.4861218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Liu H, Zhang Z. Laplacian spectra of recursive treelike small-world polymer networks: analytical solutions and applications. J Chem Phys 2013; 138:114904. [PMID: 23534659 DOI: 10.1063/1.4794921] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A central issue in the study of polymer physics is to understand the relation between the geometrical properties of macromolecules and various dynamics, most of which are encoded in the Laplacian spectra of a related graph describing the macrostructural structure. In this paper, we introduce a family of treelike polymer networks with a parameter, which has the same size as the Vicsek fractals modeling regular hyperbranched polymers. We study some relevant properties of the networks and show that they have an exponentially decaying degree distribution and exhibit the small-world behavior. We then study the Laplacian eigenvalues and their corresponding eigenvectors of the networks under consideration, with both quantities being determined through the recursive relations deduced from the network structure. Using the obtained recursive relations we can find all the eigenvalues and eigenvectors for the networks with any size. Finally, as some applications, we use the eigenvalues to study analytically or semi-analytically three dynamical processes occurring in the networks, including random walks, relaxation dynamics in the framework of generalized Gaussian structure, as well as the fluorescence depolarization under quasiresonant energy transfer. Moreover, we compare the results with those corresponding to Vicsek fractals, and show that the dynamics differ greatly for the two network families, which thus enables us to distinguish between them.
Collapse
Affiliation(s)
- Hongxiao Liu
- School of Computer Science, Fudan University, Shanghai 200433, China
| | | |
Collapse
|
46
|
Wu B, Zhang Z. Controlling the efficiency of trapping in treelike fractals. J Chem Phys 2013; 139:024106. [DOI: 10.1063/1.4812690] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Julaiti A, Wu B, Zhang Z. Eigenvalues of normalized Laplacian matrices of fractal trees and dendrimers: Analytical results and applications. J Chem Phys 2013; 138:204116. [DOI: 10.1063/1.4807589] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
48
|
Dolgushev M, Blumen A. Dynamics of discrete semiflexible chains under dihedral constraints: analytic results. J Chem Phys 2013; 138:204902. [PMID: 23742511 DOI: 10.1063/1.4807058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Here we consider the dynamics of semiflexible polymers subject both to angular and to dihedral constraints. We succeed in obtaining analytically the dynamical matrix of such systems by extending the formalism developed by Dolgushev and Blumen [J. Chem. Phys. 131, 044905 (2009)]. This leads to a set of Langevin equations whose eigenvalues determine many dynamical properties. Exemplarily, we display the mechanical relaxation loss moduli [G"(ω)] as a function of several, distinct sets of microscopic stiffness parameters; it turns out that such differences lead to macroscopically distinct patterns.
Collapse
Affiliation(s)
- Maxim Dolgushev
- Theoretical Polymer Physics, University of Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany.
| | | |
Collapse
|
49
|
Lin Y, Zhang Z. Influence of trap location on the efficiency of trapping in dendrimers and regular hyperbranched polymers. J Chem Phys 2013; 138:094905. [DOI: 10.1063/1.4793309] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Fürstenberg F, Dolgushev M, Blumen A. Dynamics of semiflexible regular hyperbranched polymers. J Chem Phys 2013; 138:034904. [DOI: 10.1063/1.4775584] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|