1
|
Patterson EL, Pettinga DJ, Ravet K, Neve P, Gaines TA. Glyphosate Resistance and EPSPS Gene Duplication: Convergent Evolution in Multiple Plant Species. J Hered 2018; 109:117-125. [PMID: 29040588 DOI: 10.1093/jhered/esx087] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
One of the increasingly widespread mechanisms of resistance to the herbicide glyphosate is copy number variation (CNV) of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene. EPSPS gene duplication has been reported in 8 weed species, ranging from 3 to 5 extra copies to more than 150 extra copies. In the case of Palmer amaranth (Amaranthus palmeri), a section of >300 kb containing EPSPS and many other genes has been replicated and inserted at new loci throughout the genome, resulting in significant increase in total genome size. The replicated sequence contains several classes of mobile genetic elements including helitrons, raising the intriguing possibility of extra-chromosomal replication of the EPSPS-containing sequence. In kochia (Kochia scoparia), from 3 to more than 10 extra EPSPS copies are arranged as a tandem gene duplication at one locus. In the remaining 6 weed species that exhibit EPSPS gene duplication, little is known about the underlying mechanisms of gene duplication or their entire sequence. There is mounting evidence that adaptive gene amplification is an important mode of evolution in the face of intense human-mediated selection pressure. The convergent evolution of CNVs for glyphosate resistance in weeds, through at least 2 different mechanisms, may be indicative of a more general importance for this mechanism of adaptation in plants. CNVs warrant further investigation across plant functional genomics for adaptation to biotic and abiotic stresses, particularly for adaptive evolution on rapid time scales.
Collapse
Affiliation(s)
- Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| | - Dean J Pettinga
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| | - Karl Ravet
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| | - Paul Neve
- Rothamsted Research, Biointeractions and Crop Protection Department, West Common, Harpenden, Hertfordshire, UK
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| |
Collapse
|
2
|
Yang X, Beres ZT, Jin L, Parrish JT, Zhao W, Mackey D, Snow AA. Effects of over-expressing a native gene encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) on glyphosate resistance in Arabidopsis thaliana. PLoS One 2017; 12:e0175820. [PMID: 28426703 PMCID: PMC5398549 DOI: 10.1371/journal.pone.0175820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/13/2017] [Indexed: 11/18/2022] Open
Abstract
Widespread overuse of the herbicide glyphosate, the active ingredient in RoundUp®, has led to the evolution of glyphosate-resistant weed biotypes, some of which persist by overproducing the herbicide's target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). EPSPS is a key enzyme in the shikimic acid pathway for biosynthesis of aromatic amino acids, lignin, and defensive compounds, but little is known about how overproducing EPSPS affects downstream metabolites, growth, or lifetime fitness in the absence of glyphosate. We are using Arabidopsis as a model system for investigating phenotypic effects of overproducing EPSPS, thereby avoiding confounding effects of genetic background or other mechanisms of herbicide resistance in agricultural weeds. Here, we report results from the first stage of this project. We designed a binary vector expressing a native EPSPS gene from Arabidopsis under control of the CaMV35S promoter (labelled OX, for over-expression). For both OX and the empty vector (labelled EV), we obtained nine independent T3 lines. Subsets of these lines were used to characterize glyphosate resistance in greenhouse experiments. Seven of the nine OX lines exhibited enhanced glyphosate resistance when compared to EV and wild-type control lines, and one of these was discarded due to severe deformities. The remaining six OX lines exhibited enhanced EPSPS gene expression and glyphosate resistance compared to controls. Glyphosate resistance was correlated with the degree of EPSPS over-expression for both vegetative and flowering plants, indicating that glyphosate resistance can be used as a surrogate for EPSPS expression levels in this system. These findings set the stage for examination of the effects of EPSPS over-expression on fitness-related traits in the absence of glyphosate. We invite other investigators to contact us if they wish to study gene expression, downstream metabolic effects, and other questions with these particular lines.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Zachery T. Beres
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Lin Jin
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio, United States of America
| | - Jason T. Parrish
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio, United States of America
| | - Wanying Zhao
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio, United States of America
| | - David Mackey
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio, United States of America
| | - Allison A. Snow
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
3
|
Salas RA, Scott RC, Dayan FE, Burgos NR. EPSPS Gene Amplification in Glyphosate-Resistant Italian Ryegrass (Lolium perenne ssp. multiflorum) Populations from Arkansas (United States). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5885-93. [PMID: 25760654 DOI: 10.1021/acs.jafc.5b00018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Glyphosate-resistant Italian ryegrass was detected in Arkansas (United States) in 2007. In 2014, 45 populations were confirmed resistant in eight counties across the state. The level of resistance and resistance mechanisms in six populations were studied to assess the severity of the problem and identify alternative management approaches. Dose-response bioassays, glyphosate absorption and translocation experiments, herbicide target (EPSPS) gene sequence analysis, and gene amplification assays were conducted. The dose causing 50% growth reduction (GR50) was 7-19 times higher for the resistant population than for the susceptible standard. Uptake and translocation of (14)C-glyphosate were similar in resistant and susceptible plants, and no mutation in the EPSPS gene known to be associated with resistance to glyphosate was detected. Resistant plants contained from 11- to >100-fold more copies of the EPSPS gene than the susceptible plants, whereas the susceptible plants had only one copy of EPSPS. Plants surviving the recommended dose of glyphosate contained at least 10 copies. The EPSPS copy number was positively related to glyphosate resistance level (r = 80). Therefore, resistance to glyphosate in these populations is due to multiplication of the target site. Resistance mechanisms could be location-specific. Suppressing the mechanism for gene amplification may overcome resistance.
Collapse
Affiliation(s)
- Reiofeli A Salas
- †Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72704, United States
| | - Robert C Scott
- §University of Arkansas Extension, P.O. Box 357, Lonoke, Arkansas 72086, United States
| | - Franck E Dayan
- #Natural Products Utilization Research Unit, Thad Cochran Research Center, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 1848, University, Mississippi 38677, United States
| | - Nilda R Burgos
- †Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72704, United States
| |
Collapse
|
4
|
Sammons RD, Gaines TA. Glyphosate resistance: state of knowledge. PEST MANAGEMENT SCIENCE 2014; 70:1367-77. [PMID: 25180399 PMCID: PMC4260172 DOI: 10.1002/ps.3743] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/17/2014] [Accepted: 01/25/2014] [Indexed: 05/18/2023]
Abstract
Studies of mechanisms of resistance to glyphosate have increased current understanding of herbicide resistance mechanisms. Thus far, single-codon non-synonymous mutations of EPSPS (5-enolypyruvylshikimate-3-phosphate synthase) have been rare and, relative to other herbicide mode of action target-site mutations, unconventionally weak in magnitude for resistance to glyphosate. However, it is possible that weeds will emerge with non-synonymous mutations of two codons of EPSPS to produce an enzyme endowing greater resistance to glyphosate. Today, target-gene duplication is a common glyphosate resistance mechanism and could become a fundamental process for developing any resistance trait. Based on competition and substrate selectivity studies in several species, rapid vacuole sequestration of glyphosate occurs via a transporter mechanism. Conversely, as the chloroplast requires transporters for uptake of important metabolites, transporters associated with the two plastid membranes may separately, or together, successfully block glyphosate delivery. A model based on finite glyphosate dose and limiting time required for chloroplast loading sets the stage for understanding how uniquely different mechanisms can contribute to overall glyphosate resistance.
Collapse
Affiliation(s)
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
| |
Collapse
|
5
|
Gaines TA, Wright AA, Molin WT, Lorentz L, Riggins CW, Tranel PJ, Beffa R, Westra P, Powles SB. Identification of genetic elements associated with EPSPs gene amplification. PLoS One 2013; 8:e65819. [PMID: 23762434 PMCID: PMC3677901 DOI: 10.1371/journal.pone.0065819] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/28/2013] [Indexed: 01/22/2023] Open
Abstract
Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world's most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S) A. palmeri, and that only one of these was amplified in glyphosate-resistant (R) A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs) were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac) transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene.
Collapse
Affiliation(s)
- Todd A Gaines
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, Western Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Salas RA, Dayan FE, Pan Z, Watson SB, Dickson JW, Scott RC, Burgos NR. EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) from Arkansas. PEST MANAGEMENT SCIENCE 2012; 68:1223-30. [PMID: 22815255 DOI: 10.1002/ps.3342] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 04/05/2012] [Accepted: 04/19/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Resistance to glyphosate in weed species is a major challenge for the sustainability of glyphosate use in crop and non-crop systems. A glyphosate-resistant Italian ryegrass population has been identified in Arkansas. This research was conducted to elucidate its resistance mechanism. RESULTS The investigation was conducted on resistant and susceptible plants from a population in Desha County, Arkansas (Des03). The amounts of glyphosate that caused 50% overall visual injury were 7 to 13 times greater than those for susceptible plants from the same population. The EPSPS gene did not contain any point mutation that has previously been associated with resistance to glyphosate, nor were there any other mutations on the EPSPS gene unique to the Des03 resistant plants. The resistant plants had 6-fold higher basal EPSPS enzyme activities than the susceptible plants, but their I(50) values in response to glyphosate were similar. The resistant plants contained up to 25 more copies of EPSPS gene than the susceptible plants. The level of resistance to glyphosate correlated with increases in EPSPS enzyme activity and EPSPS copy number. CONCLUSION Increased EPSPS gene amplification and EPSPS enzyme activity confer resistance to glyphosate in the Des03 population. This is the first report of EPSPS gene amplification in glyphosate-resistant Italian ryegrass. Other resistance mechanism(s) may also be involved.
Collapse
Affiliation(s)
- Reiofeli A Salas
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 2009; 7:578-88. [PMID: 19609259 DOI: 10.1038/nrmicro2174] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent data suggest that, in response to the presence of antibiotics, gene duplication and amplification (GDA) constitutes an important adaptive mechanism in bacteria. For example, resistance to sulphonamide, trimethoprim and beta-lactams can be conferred by increased gene dosage through GDA of antibiotic hydrolytic enzymes, target enzymes or efflux pumps. Furthermore, most types of antibiotic resistance mechanism are deleterious in the absence of antibiotics, and these fitness costs can be ameliorated by increased gene dosage of limiting functions. In this Review, we highlight the dynamic properties of gene amplifications and describe how they can facilitate adaptive evolution in response to toxic drugs.
Collapse
|
9
|
Baerson SR, Rodriguez DJ, Tran M, Feng Y, Biest NA, Dill GM. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. PLANT PHYSIOLOGY 2002; 129:1265-75. [PMID: 12114580 PMCID: PMC166520 DOI: 10.1104/pp.001560] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2002] [Revised: 02/07/2002] [Accepted: 03/01/2002] [Indexed: 05/18/2023]
Abstract
The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD(50) value approximately 2- to 4-fold greater than the sensitive biotype collected from the same region. A comparison of the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity by glyphosate in extracts prepared from the resistant (R) and sensitive (S) biotypes revealed an approximately 5-fold higher IC(50)(glyphosate) for the (R) biotype. Sequence comparisons of the predicted EPSPS mature protein coding regions from both biotypes revealed four single-nucleotide differences, two of which result in amino acid changes. One of these changes, a proline to serine substitution at position 106 in the (R) biotype, corresponds to a substitution previously identified in a glyphosate-insensitive EPSPS enzyme from Salmonella typhimurium. Kinetic data generated for the recombinant enzymes suggests that the second substitution identified in the (R) EPSPS does not contribute significantly to its reduced glyphosate sensitivity. Escherichia coli aroA- (EPSPS deficient) strains expressing the mature EPSPS enzyme from the (R) biotype exhibited an approximately 3-fold increase in glyphosate tolerance relative to strains expressing the mature EPSPS from the (S) biotype. These results provide the first evidence for an altered EPSPS enzyme as an underlying component of evolved glyphosate resistance in any plant species.
Collapse
Affiliation(s)
- Scott R Baerson
- Monsanto Company, 700 Chesterfield Parkway North, St. Louis, Missouri 63198, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Akashi H, Kurata H, Seki M, Taira K, Furusaki S. Screening for transgenic plant cells that highly express a target gene from genetically mixed cells. Biochem Eng J 2002. [DOI: 10.1016/s1369-703x(01)00182-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Widholm JM, Chinnala AR, Ryu JH, Song HS, Eggett T, Brotherton JE. Glyphosate selection of gene amplification in suspension cultures of 3 plant species. PHYSIOLOGIA PLANTARUM 2001; 112:540-545. [PMID: 11473714 DOI: 10.1034/j.1399-3054.2001.1120411.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stepwise selection was carried out with increasing glyphosate concentrations to produce suspension cultures of Medicago sativa L. (alfalfa), Glycine max L. (Merr.) (soybean) and Nicotiana tabacum L. (tobacco) (two lines) that were at least 100-fold more resistant than the original culture as measured by the I50. The selection process required from 8 to 11 transfers to fresh medium over a total period from 161 to 312 days. The alfalfa and soybean lines contained 62- and 21-fold higher activity levels of the glyphosate target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), respectively. The tobacco lines had EPSPS enzyme activity levels more than 800-times higher than the original cultures. The EPSPS gene copy number and mRNA were increased in all of the lines as measured by southern and northern hybridization, respectively. Thus, as has been found before with most glyphosate-resistant suspension cultures, the resistance is caused by high EPSPS enzyme activity due to EPSPS gene amplification. Alfalfa and soybean EPSPS gene amplification and the very high EPSPS enzyme activity increases found in the tobacco cultures have not been reported before. These studies show that EPSPS gene amplification can occur in many plant species to confer glyphosate tolerance.
Collapse
Affiliation(s)
- Jack M. Widholm
- University of Illinois, Department of Crop Sciences, Edward R. Madigan Laboratory, 1201 W. Gregory Dr., Urbana, IL 61801, USA; Present address: Regional Institute of Education, Pushkar Road, Ajmer 3005004, India; Present address: Chonbuk National University, Department of Agronomy, Chonju 560-756, Korea; Present address: BASF Plant Science, P.O. Box 13528, 26 Davis Drive, Research Triangle Park, NC 27709-3528, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The shikimate pathway links metabolism of carbohydrates to biosynthesis of aromatic compounds. In a sequence of seven metabolic steps, phosphoenolpyruvate and erythrose 4-phosphate are converted to chorismate, the precursor of the aromatic amino acids and many aromatic secondary metabolites. All pathway intermediates can also be considered branch point compounds that may serve as substrates for other metabolic pathways. The shikimate pathway is found only in microorganisms and plants, never in animals. All enzymes of this pathway have been obtained in pure form from prokaryotic and eukaryotic sources and their respective DNAs have been characterized from several organisms. The cDNAs of higher plants encode proteins with amino terminal signal sequences for plastid import, suggesting that plastids are the exclusive locale for chorismate biosynthesis. In microorganisms, the shikimate pathway is regulated by feedback inhibition and by repression of the first enzyme. In higher plants, no physiological feedback inhibitor has been identified, suggesting that pathway regulation may occur exclusively at the genetic level. This difference between microorganisms and plants is reflected in the unusually large variation in the primary structures of the respective first enzymes. Several of the pathway enzymes occur in isoenzymic forms whose expression varies with changing environmental conditions and, within the plant, from organ to organ. The penultimate enzyme of the pathway is the sole target for the herbicide glyphosate. Glyphosate-tolerant transgenic plants are at the core of novel weed control systems for several crop plants.
Collapse
Affiliation(s)
- Klaus M. Herrmann
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907; e-mail: , Monsanto Company, St. Louis, Missouri 63198; e-mail:
| | | |
Collapse
|
13
|
Arakawa T, Yu J, Langridge WH. Food plant-delivered cholera toxin B subunit for vaccination and immunotolerization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 464:161-78. [PMID: 10335393 DOI: 10.1007/978-1-4615-4729-7_13] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Developments in recombinant DNA technology have enabled molecular biologists to introduce a variety of novel genes into plant species for specific purposes. From crop improvement to vaccine antigen and antibody production, plants are attractive bioreactors for production of recombinant proteins, as their eukaryotic nature often permits appropriate post-translational modification of recombinant proteins to retain native biological activity. The autotrophic growth of plants requires only soil minerals, water, nitrogen, sunlight energy and carbon dioxide for the synthesis of constituent proteins. Furthermore, production of biologically active proteins in food plants provides the advantage of direct delivery through consumption of edible transformed plant tissues. The production of cholera toxin B subunit in potato plants and applications for prevention of infectious and autoimmune disease are explained in this contribution.
Collapse
Affiliation(s)
- T Arakawa
- Center for Molecular Biology and Gene Therapy, School of Medicine, Loma Linda University, California 92350, USA
| | | | | |
Collapse
|
14
|
Jones JD, Weller SC, Goldsbrough PB. Selection for kanamycin resistance in transformed petunia cells leads to the co-amplification of a linked gene. PLANT MOLECULAR BIOLOGY 1994; 24:505-514. [PMID: 8123792 DOI: 10.1007/bf00024118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A cell suspension culture was established from a transgenic petunia (Petunia hybrida L.) plant which carried genes encoding neomycin phosphotransferase II (nptII) and beta-glucuronidase (uidA, GUS). Two selection experiments were performed to obtain cell lines with increased resistance to kanamycin. In the first, two independently selected cell lines grown in the presence of 350 micrograms/ml kanamycin were eight to ten-fold more resistant to kanamycin than unselected cells. Increased resistance was correlated with amplification of the nptII gene and an increase in nptII mRNA levels. Selection for kanamycin resistance also produced amplification of the linked GUS gene, resulting in increased GUS mRNA levels and enzyme activity. Selected cells grown in the absence of kanamycin for twelve growth cycles maintained increased copy numbers of both genes, and GUS enzyme activity was also stably overexpressed. In a second selection experiment, a cell line grown continuously in medium containing 100 micrograms/ml kanamycin exhibited higher nptII and GUS gene copy numbers and an increase in GUS enzyme activity after eleven growth cycles. In this cell line, amplification of the two genes was accompanied by DNA rearrangement.
Collapse
Affiliation(s)
- J D Jones
- Department of Horticulture, Purdue University, W. Lafayette, IN 47907-1165
| | | | | |
Collapse
|