1
|
Son SM, Ahn E, Ahn S, Cho S, Ryu S. Prevalence of antibiotic-resistant Acinetobacter spp. on soil and crops collected from agricultural fields in South Korea. Food Sci Biotechnol 2024; 33:1931-1937. [PMID: 38752113 PMCID: PMC11091005 DOI: 10.1007/s10068-023-01496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 05/18/2024] Open
Abstract
The emergence of antibiotic resistance in Acinetobacter spp. is a rising public health concern worldwide. The objective of this study was to investigate the prevalence of antibiotic-resistance genes and the virulence of Acinetobacter spp. isolated from soil and crops obtained from agricultural fields in South Korea. Eight Acinetobacter spp. isolates carried various antibiotic resistance genes, such as emrAB (100%), cat/craA (100%), and aadA gene (87.5%). Minimum inhibitory concentration (MIC) analysis revealed that strains harboring antibiotic resistance genes exhibited high resistance to the respective antibiotics, such as colistin, chloramphenicol, and streptomycin. Interestingly, most of these isolates had high capability of biofilm formation and swarming motility, along with faster growth rates. Taken together, our study demonstrated that antibiotic-resistant Acinetobacter isolated from agricultural settings in South Korea not only frequently carries antibiotic resistance genes but also has virulence-related traits. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01496-7.
Collapse
Affiliation(s)
- Su Min Son
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826 Republic of Korea
| | - Eunbyeol Ahn
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sojin Ahn
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826 Republic of Korea
- eGnome Inc., Seoul, 05836 Republic of Korea
| | - Seoae Cho
- eGnome Inc., Seoul, 05836 Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
2
|
Ghandour R, Gao Y, Laskowski J, Barahimipour R, Ruf S, Bock R, Zoschke R. Transgene insertion into the plastid genome alters expression of adjacent native chloroplast genes at the transcriptional and translational levels. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:711-725. [PMID: 36529916 PMCID: PMC10037153 DOI: 10.1111/pbi.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In plant biotechnology and basic research, chloroplasts have been used as chassis for the expression of various transgenes. However, potential unintended side effects of transgene insertion and high-level transgene expression on the expression of native chloroplast genes are often ignored and have not been studied comprehensively. Here, we examined expression of the chloroplast genome at both the transcriptional and translational levels in five transplastomic tobacco (Nicotiana tabacum) lines carrying the identical aadA resistance marker cassette in diverse genomic positions. Although none of the lines exhibits a pronounced visible phenotype, the analysis of three lines that contain the aadA insertion in different locations within the petL-petG-psaJ-rpl33-rps18 transcription unit demonstrates that transcriptional read-through from the aadA resistance marker is unavoidable, and regularly causes overexpression of downstream sense-oriented chloroplast genes at the transcriptional and translational levels. Investigation of additional lines that harbour the aadA intergenically and outside of chloroplast transcription units revealed that expression of the resistance marker can also cause antisense effects by interference with transcription/transcript accumulation and/or translation of downstream antisense-oriented genes. In addition, we provide evidence for a previously suggested role of genomically encoded tRNAs in chloroplast transcription termination and/or transcript processing. Together, our data uncover principles of neighbouring effects of chloroplast transgenes and suggest general strategies for the choice of transgene insertion sites and expression elements to minimize unintended consequences of transgene expression on the transcription and translation of native chloroplast genes.
Collapse
Affiliation(s)
- Rabea Ghandour
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Yang Gao
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | | | | | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| |
Collapse
|
3
|
Ahmad N, Michoux F, Lössl AG, Nixon PJ. Challenges and perspectives in commercializing plastid transformation technology. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5945-5960. [PMID: 27697788 DOI: 10.1093/jxb/erw360] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plastid transformation has emerged as an alternative platform to generate transgenic plants. Attractive features of this technology include specific integration of transgenes-either individually or as operons-into the plastid genome through homologous recombination, the potential for high-level protein expression, and transgene containment because of the maternal inheritance of plastids. Several issues associated with nuclear transformation such as gene silencing, variable gene expression due to the Mendelian laws of inheritance, and epigenetic regulation have not been observed in the plastid genome. Plastid transformation has been successfully used for the production of therapeutics, vaccines, antigens, and commercial enzymes, and for engineering various agronomic traits including resistance to biotic and abiotic stresses. However, these demonstrations have usually focused on model systems such as tobacco, and the technology per se has not yet reached the market. Technical factors limiting this technology include the lack of efficient protocols for the transformation of cereals, poor transgene expression in non-green plastids, a limited number of selection markers, and the lengthy procedures required to recover fully segregated plants. This article discusses the technology of transforming the plastid genome, the positive and negative features compared with nuclear transformation, and the current challenges that need to be addressed for successful commercialization.
Collapse
Affiliation(s)
- Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Franck Michoux
- Alkion Biopharma SAS, 4 rue Pierre Fontaine, 91058 Evry, France
| | - Andreas G Lössl
- Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
4
|
Li Y, Wang R, Hu Z, Li H, Lu S, Zhang J, Lin Y, Zhou F. Expression of a Codon-Optimized dsdA Gene in Tobacco Plastids and Rice Nucleus Confers D-Serine Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:640. [PMID: 27242842 PMCID: PMC4863892 DOI: 10.3389/fpls.2016.00640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
D-serine is toxic to plants. D-serine ammonia lyase, which is encoded by the dsdA gene, can attenuate this toxicity with high specificity. In the present study, we explored the function of codon-optimized dsdA with tobacco plastids and rice nuclear transformation system. It was shown that dsdA gene was site-specifically integrated into the tobacco plastid genome and displayed a high level of expression. Genetic analysis of the progenies showed that dsdA gene is maternally inherited and confers sufficient D-serine resistance in tobacco. The effective screening concentrations of D-serine for seed germination, callus regeneration and foliar spray were 10, 30, and 75 mM, respectively. In addition, calluses from homozygous transgenic rice lines also showed significant tolerance to D-serine (up to 75 mM). Our study proves the feasibility of using dsdA gene as a selectable marker in both plastid and nuclear transformation systems.
Collapse
|
5
|
Metz P, Nap J. A transgene-centred approach to the biosafety of transgenic plants: overview of selection and reporter genes. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/plb.1997.46.1.25] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Kolotilin I, Kaldis A, Pereira EO, Laberge S, Menassa R. Optimization of transplastomic production of hemicellulases in tobacco: effects of expression cassette configuration and tobacco cultivar used as production platform on recombinant protein yields. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:65. [PMID: 23642171 PMCID: PMC3655837 DOI: 10.1186/1754-6834-6-65] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/29/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND Chloroplast transformation in tobacco has been used extensively to produce recombinant proteins and enzymes. Chloroplast expression cassettes can be designed with different configurations of the cis-acting elements that govern foreign gene expression. With the aim to optimize production of recombinant hemicellulases in transplastomic tobacco, we developed a set of cassettes that incorporate elements known to facilitate protein expression in chloroplasts and examined expression and accumulation of a bacterial xylanase XynA. Biomass production is another important factor in achieving sustainable and high-volume production of cellulolytic enzymes. Therefore, we compared productivity of two tobacco cultivars - a low-alkaloid and a high-biomass - as transplastomic expression platforms. RESULTS Four different cassettes expressing XynA produced various mutant phenotypes of the transplastomic plants, affected their growth rate and resulted in different accumulation levels of the XynA enzyme. The most productive cassette was identified and used further to express XynA and two additional fungal xylanases, Xyn10A and Xyn11B, in a high-biomass tobacco cultivar. The high biomass cultivar allowed for a 60% increase in XynA production per plant. Accumulation of the fungal enzymes reached more than 10-fold higher levels than the bacterial enzyme, constituting up to 6% of the total soluble protein in the leaf tissue. Use of a well-characterized translational enhancer with the selected expression cassette revealed inconsistent effects on accumulation of the recombinant xylanases. Additionally, differences in the enzymatic activity of crude plant extracts measured in leaves of different age suggest presence of a specific xylanase inhibitor in the green leaf tissue. CONCLUSION Our results demonstrate the pivotal importance of the expression cassette design and appropriate tobacco cultivar for high-level transplastomic production of recombinant proteins.
Collapse
Affiliation(s)
- Igor Kolotilin
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Angelo Kaldis
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Eridan Orlando Pereira
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| | - Serge Laberge
- Soils and Crops Research Development Center, Agriculture and Agri-Food Canada, Québec, QC, Canada
| | - Rima Menassa
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
7
|
Suitability of non-lethal marker and marker-free systems for development of transgenic crop plants: Present status and future prospects. Biotechnol Adv 2011; 29:703-14. [DOI: 10.1016/j.biotechadv.2011.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 12/16/2022]
|
8
|
Wei Z, Liu Y, Lin C, Wang Y, Cai Q, Dong Y, Xing S. Transformation of alfalfa chloroplasts and expression of green fluorescent protein in a forage crop. Biotechnol Lett 2011; 33:2487-94. [DOI: 10.1007/s10529-011-0709-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/12/2011] [Indexed: 12/22/2022]
|
9
|
Baecker JJ, Sneddon JC, Hollingsworth MJ. Efficient translation in chloroplasts requires element(s) upstream of the putative ribosome binding site from atpI. AMERICAN JOURNAL OF BOTANY 2009; 96:627-636. [PMID: 21628219 DOI: 10.3732/ajb.0800259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Thousands of proteins make up a chloroplast, but fewer than 100 are encoded by the chloroplast genome. Despite this low number, expression of chloroplast-encoded genes is essential for plant survival. Every chloroplast has its own gene expression system with a major regulatory point at the initiation of protein synthesis (translation). In chloroplasts, most protein-encoding genes contain elements resembling the ribosome binding sites (RBS) found in prokaryotes. In vitro, these putative chloroplast ribosome binding sequences vary in their ability to support translation. Here we report results from an investigation into effects of the predicted RBS for the tobacco chloroplast atpI gene on translation in vivo. Two reporter constructs, differing only in their 5'-untranslated regions (5'UTRs) were stably incorporated into tobacco chloroplast genomes and their expression analyzed. One 5'UTR was derived from the wild-type (WT) atpI gene. The second, Holo-substitution (Holo-sub), had nonchloroplast sequence replacing all wild-type nucleotides, except for the putative RBS. The abundance of reporter RNA was the same for both 5'UTRs. However, translation controlled by Holo-sub was less than 4% that controlled by WT. These in vivo experiments support the idea that translation initiation in land plant chloroplasts depends on 5'UTR elements outside the putative RBS.
Collapse
Affiliation(s)
- Joshua J Baecker
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, New York 14260 USA
| | | | | |
Collapse
|
10
|
|
11
|
Chiyoda S, Ishizaki K, Kataoka H, Yamato KT, Kohchi T. Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. PLANT CELL REPORTS 2008; 27:1467-73. [PMID: 18553085 DOI: 10.1007/s00299-008-0570-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 05/15/2023]
Abstract
The liverwort, Marchantia polymorpha L., belongs to a group of basal land plants and is an emerging model for plant biology. We established a procedure to prepare sporangia of M. polymorpha under laboratory conditions by promoting its transition to reproductive development by far-red light irradiation. Here we report an improved direct transformation system of M. polymorpha using immature thalli developing from spores. Hygromycin-resistant transformants were obtained on selective media by transformation with a plasmid carrying the hygromycin-phosphotransferase gene (hpt) conferring hygromycin resistance in 4 weeks. The aminoglycoside-3''-adenyltransferase gene (aadA) conferring spectinomycin resistance was also successfully used as an additional selectable marker for nuclear transformation of M. polymorpha. The availability of the aadA gene in addition to the hpt gene should make M. polymorpha a versatile host for genetic manipulation. DNA gel-blot analyses indicated that transformed thalli carried a variable number of copies of the transgene integrated into the genome. Although the previous system using thalli grown from gemmae required a two-step selection in liquid and solid media for 8 weeks, the system reported here using thalli developing from spores allows generation of transformants in half the time by direct selection on solid media, facilitating genetic analyses in this model plant.
Collapse
Affiliation(s)
- Shota Chiyoda
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | | | | |
Collapse
|
12
|
Pontiroli A, Simonet P, Frostegard A, Vogel TM, Monier JM. Fate of transgenic plant DNA in the environment. ACTA ACUST UNITED AC 2007; 6:15-35. [DOI: 10.1051/ebr:2007037] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Kuchuk N, Sytnyk K, Vasylenko M, Shakhovsky A, Komarnytsky I, Kushnir S, Gleba Y. Genetic transformation of plastids of different Solanaceae species using tobacco cells as organelle hosts. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:519-27. [PMID: 16758189 DOI: 10.1007/s00122-006-0318-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 03/31/2006] [Indexed: 05/08/2023]
Abstract
The plastid genome of angiosperms represents an attractive target for genetic manipulations. However plastid transformation of higher plants, especially of agriculturally valuable crops is an extremely difficult problem. Transformation protocols developed for tobacco 15 years ago failed to produce similar results with more than a handful of other species so far. We have analyzed plastid transformability of remote cytoplasmic hybrids (cybrids) that combine nuclei of tobacco, an easily transformable species, and plastids of some other, recalcitrant Solanaceae species. Here, we demonstrate that the plastids of five species of Solanaceae family, representing two subfamilies and three tribes, can be easily transformed if the plastids of these species are transferred into a cell of a transformable species (tobacco). The results can be considered to be an alternative approach to the development of plastid transformation technologies for recalcitrant species using a transformable intermediary ("clipboard") host.
Collapse
Affiliation(s)
- Nikolay Kuchuk
- Institute of Cell Biology and Genetic Engineering of NASU, Acad. Zabolotnoho str. 148, Kiev, 03143, Ukraine.
| | | | | | | | | | | | | |
Collapse
|
14
|
Miki B, McHugh S. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 2004; 107:193-232. [PMID: 14736458 DOI: 10.1016/j.jbiotec.2003.10.011] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Approximately fifty marker genes used for transgenic and transplastomic plant research or crop development have been assessed for efficiency, biosafety, scientific applications and commercialization. Selectable marker genes can be divided into several categories depending on whether they confer positive or negative selection and whether selection is conditional or non-conditional on the presence of external substrates. Positive selectable marker genes are defined as those that promote the growth of transformed tissue whereas negative selectable marker genes result in the death of the transformed tissue. The positive selectable marker genes that are conditional on the use of toxic agents, such as antibiotics, herbicides or drugs were the first to be developed and exploited. More recent developments include positive selectable marker genes that are conditional on non-toxic agents that may be substrates for growth or that induce growth and differentiation of the transformed tissues. Newer strategies include positive selectable marker genes which are not conditional on external substrates but which alter the physiological processes that govern plant development. A valuable companion to the selectable marker genes are the reporter genes, which do not provide a cell with a selective advantage, but which can be used to monitor transgenic events and manually separate transgenic material from non-transformed material. They fall into two categories depending on whether they are conditional or non-conditional on the presence of external substrates. Some reporter genes can be adapted to function as selectable marker genes through the development of novel substrates. Despite the large number of marker genes that exist for plants, only a few marker genes are used for most plant research and crop development. As the production of transgenic plants is labor intensive, expensive and difficult for most species, practical issues govern the choice of selectable marker genes that are used. Many of the genes have specific limitations or have not been sufficiently tested to merit their widespread use. For research, a variety of selection systems are essential as no single selectable marker gene was found to be sufficient for all circumstances. Although, no adverse biosafety effects have been reported for the marker genes that have been adopted for widespread use, biosafety concerns should help direct which markers will be chosen for future crop development. Common sense dictates that marker genes conferring resistance to significant therapeutic antibiotics should not be used. An area of research that is growing rapidly but is still in its infancy is the development of strategies for eliminating selectable marker genes to generate marker-free plants. Among the several technologies described, two have emerged with significant potential. The simplest is the co-transformation of genes of interest with selectable marker genes followed by the segregation of the separate genes through conventional genetics. The more complicated strategy is the use of site-specific recombinases, under the control of inducible promoters, to excise the marker genes and excision machinery from the transgenic plant after selection has been achieved. In this review each of the genes and processes will be examined to assess the alternatives that exist for producing transgenic plants.
Collapse
Affiliation(s)
- Brian Miki
- Research Branch, Agriculture and Agri-Food Canada, Room 2091, KW Neatby Bldg., CEF, 960 Carling Avenue, Ottawa, Ont., Canada K1A 0C6.
| | | |
Collapse
|
15
|
Opinion of the Scientific Panel on Genetically Modified Organisms on the use of antibiotic resistance genes as marker genes in genetically modified plants. EFSA J 2004. [DOI: 10.2903/j.efsa.2004.48] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Frost D, Way H, Howles P, Luck J, Manners J, Hardham A, Finnegan J, Ellis J. Tobacco transgenic for the flax rust resistance gene L expresses allele-specific activation of defense responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:224-32. [PMID: 14964536 DOI: 10.1094/mpmi.2004.17.2.224] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tobacco was transformed with three different alleles (L2, L6, and L10) of the flax rust resistance gene L, a member of the toll interleukin-1 receptor, nucleotide-binding site, leucine-rich repeat (TIR-NBS-LRR) class of plant disease resistance genes. L6 transgenics had a stunted phenotype, expressed several defense response genes constitutively, and had increased resistance to the fungus Cercospora nicotianae and the oomycete Phytophthora parasitica pv. nicotianae. L2 and L10 transgenics, with one exception for L10, did not express these phenotypes, indicating that the activation of tobacco defense responses is L6 allele-specific. The phenotype of the exceptional L10 transgenic plant was associated with the presence of a truncated L10 gene resulting from an aberrant T-DNA integration. The truncated gene consisted of the promoter, the complete TIR region, and 39 codons of the NBS domain fused inframe to a tobacco retrotransposon-like sequence. A similar truncated L10 gene, constructed in vitro, was transiently expressed in tobacco leaves and gave rise to a strong localized necrotic reaction. Together, these results suggest that defense signaling properties of resistance genes can be expressed in an allele-specific and pathogen-independent manner when transferred between plant genera.
Collapse
Affiliation(s)
- Donna Frost
- CSIRO Plant Industry, Cnr Clunies Ross Street and Barry Drive, Acton ACT 2601, Australia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Plastids of higher plants are semi-autonomous organelles with a small, highly polyploid genome and their own transcription-translation machinery. This review provides an overview of the technology for the genetic modification of the plastid genome including: vectors, marker genes and gene design, the use of gene knockouts and over-expression to probe plastid function and the application of site-specific recombinases for excision of target DNA. Examples for applications in basic science include the study of plastid gene transcription, mRNA editing, photosynthesis and evolution. Examples for biotechnological applications are incorporation of transgenes in the plastid genome for containment and high-level expression of recombinant proteins for pharmaceutical and industrial applications. Plastid transformation is routine only in tobacco. Progress in implementing the technology in other crops is discussed.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854-8020, USA.
| |
Collapse
|
18
|
Guo BZ, Yu J, Holbrook CC, Lee RD, Lynch RE. Application of Differential Display RT‐PCR and EST/Microarray Technologies to the Analysis of Gene Expression in Response to Drought Stress and Elimination of Aflatoxin Contamination in Corn and Peanut. ACTA ACUST UNITED AC 2003. [DOI: 10.1081/txr-120024095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Skarjinskaia M, Svab Z, Maliga P. Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 2003; 12:115-22. [PMID: 12650530 DOI: 10.1023/a:1022110402302] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A plastid transformation protocol was developed for Lesquerella fendleri, a species with a high capacity for plant regeneration in tissue culture. Transformation vector pZS391B carried an aadA16gfp marker gene conferring streptomycin-spectinomycin resistance and green fluorescence under UV light. Biolistic transformation of 51 Lesquerella leaf samples, followed by spectinomycin selection, yielded two transplastomic clones. The AAD-GFP fusion protein, the marker gene product, was localized to chloroplasts by confocal laser microscopy. Fertile plants and seed progeny were obtained in line Lf-pZS391B-1. In the 51 samples a large number (108) of spontaneous mutants were identified. In five of the lines spectinomycin resistance was localized to a conserved stem structure by sequencing 16S rRNA genes. Success in L. fendleri, a wild oilseed species, extends plastid transformation beyond Arabidopsis thaliana in the Brassicaceae family.
Collapse
Affiliation(s)
- Marina Skarjinskaia
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | |
Collapse
|
20
|
Corneille S, Lutz K, Svab Z, Maliga P. Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:171-8. [PMID: 11489194 DOI: 10.1046/j.1365-313x.2001.01068.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Incorporation of a selectable marker gene during transformation is essential to obtain transformed plastids. However, once transformation is accomplished, having the marker gene becomes undesirable. Here we report on adapting the P1 bacteriophage CRE-lox site-specific recombination system for the elimination of marker genes from the plastid genome. The system was tested by the elimination of a negative selectable marker, codA, which is flanked by two directly oriented lox sites (>codA>). Highly efficient elimination of >codA> was triggered by introduction of a nuclear-encoded plastid-targeted CRE by Agrobacterium transformation or via pollen. Excision of >codA> in tissue culture cells was frequently accompanied by a large deletion of a plastid genome segment which includes the tRNA-ValUAC gene. However, the large deletions were absent when cre was introduced by pollination. Thus pollination is our preferred protocol for the introduction of cre. Removal of the >codA> coding region occurred at a dramatic speed, in striking contrast to the slow and gradual build-up of transgenic copies during plastid transformation. The nuclear cre gene could subsequently be removed by segregation in the seed progeny. The modified CRE-lox system described here will be a highly efficient tool to obtain marker-free transplastomic plants.
Collapse
Affiliation(s)
- S Corneille
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Engineering the nuclear genome of plants is perceived to be associated with problems regarding biosafety and the stability of expression of the transgene. Alternative transformation strategies using the genomic outfit of the plastid promise to be more successful in this respect. Over the past few years progress has been made in screening procedures, and plastid transformation technology has allowed function to be assigned to open reading frames, massive expression of insecticidal agents and proteins involved in herbicide resistance, and the accumulation of biopolymers. Recently, the design of a novel femtoinjection technique that allows injection into chloroplasts has provided the opportunity to further manipulate and understand chloroplastic gene expression.
Collapse
Affiliation(s)
- A J van Bel
- Institute for General Botany and Plant Physiology, Justus Liebig University, Senckenbergstrasse 17, D-35390 Giessen, Germany.
| | | | | | | |
Collapse
|
22
|
Abstract
Transformation of the plastid genome has a number of inherent advantages for the engineering of gene expression in plants. These advantages include: 10-50 times higher transgene expression levels; the absence of gene silencing and position effect variation; the ability to express polycistronic messages from a single promoter; uniparental plastid gene inheritance in most crop plants that prevents pollen transmission of foreign DNA; integration via a homologous recombination process that facilitates targeted gene replacement and precise transgene control; and sequestration of foreign proteins in the organelle which prevents adverse interactions with the cytoplasmic environment. It is now 12 years since the first conclusive demonstration of stable introduction of cloned DNA into the Chlamydomonas chloroplast by the Boynton and Gillham laboratory, and 10 years since the laboratory of Pal Maliga successfully extended these approaches to tobacco. Since then, technical developments in plastid transformation and advances in our understanding of the rules of plastid gene expression have facilitated tremendous progress towards the goal of establishing the chloroplast as a feasible platform for genetic modification of plants.
Collapse
Affiliation(s)
- P B Heifetz
- Novartis Agribusiness Biotechnology Research, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709-2257, USA.
| |
Collapse
|
23
|
Bretagne-Sagnard B, Chupeau Y. Selection of transgenic flax plants is facilitated by spectinomycin. Transgenic Res 1996. [DOI: 10.1007/bf01969431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Lowe K, Bowen B, Hoerster G, Ross M, Bond D, Pierce D, Gordon-Kamm B. Germline Transformation of Maize Following Manipulation of Chimeric Shoot Meristems. Nat Biotechnol 1995. [DOI: 10.1038/nbt0795-677] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Zoubenko OV, Allison LA, Svab Z, Maliga P. Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 1994; 22:3819-24. [PMID: 7937099 PMCID: PMC308375 DOI: 10.1093/nar/22.19.3819] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The pPRV plasmids are vectors for targeted insertion of foreign genes into the tobacco plastid genome (ptDNA). The vectors are based on the pUC119 plasmid which replicates in E. coli but not in plastids. The spectinomycin resistance (aadA) gene and a multiple cloning site (MCS) are flanked by 1.8-kb and 1.2-kb ptDNA sequences. Biolistic delivery of vector DNA, followed by spectinomycin selection, yields plastid transformants at a reproducible frequency, approximately 1 transplastomic line per bombarded sample. The selected aadA gene and linked non-selectable genes cloned into the MCS are incorporated into the ptDNA by two homologous recombination events via the flanking ptDNA sequences. The transplastomes thus generated are stable, and are maternally transmitted to the seed progeny. The pPRV vector series targets insertions between the divergently transcribed trnV gene and the rps12/7 operon. The lack of readthrough transcription of appropriately oriented transgenes makes the vectors an ideal choice for the study of transgene promoter activity.
Collapse
Affiliation(s)
- O V Zoubenko
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway 08855-0759
| | | | | | | |
Collapse
|
26
|
Abstract
The nucleotide sequence of gene aadA2 of plasmid pSa, coding for aminoglycoside-3"-adenyltransferase, has been reexamined. We found differences with respect to the sequence previously determined by Tait et al. (R. C. Tait, H. Rempel, R. L. Rodriguez, and C. I. Kado, Gene 36:97-104, 1985). These deviations are located in the coding region and in the 3' noncoding region. By making deletions in the region for initiation of protein synthesis, we identified a GTG triplet as the most probable start codon for translation.
Collapse
Affiliation(s)
- A Bito
- Institut für Genetik und Allgemeine Biologie, Universität Salzburg, Austria
| | | |
Collapse
|
27
|
Use of the maize transposonsActivator andDissociation to show that phosphinothricin and spectinomycin resistance genes act non-cell-autonomously in tobacco and tomato seedlings. Transgenic Res 1993. [DOI: 10.1007/bf01969379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Svab Z, Maliga P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci U S A 1993; 90:913-7. [PMID: 8381537 PMCID: PMC45780 DOI: 10.1073/pnas.90.3.913] [Citation(s) in RCA: 517] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We report here a 100-fold increased frequency of plastid transformation in tobacco by selection for a chimeric aadA gene encoding aminoglycoside 3"-adenylyltransferase, as compared with that obtained with mutant 16S rRNA genes. Expression of aadA confers resistance to spectinomycin and streptomycin. In transforming plasmid pZS197, a chimeric aadA is cloned between rbcL and open reading frame ORF512 plastid gene sequences. Selection was for spectinomycin resistance after biolistic delivery of pZS197 DNA into leaf cells. DNA gel-blot analysis confirmed incorporation of the chimeric aadA gene into the plastid genome by two homologous recombination events via the flanking plastid gene sequences. The chimeric gene became homoplasmic in the recipient cells and is uniformly transmitted to the maternal seed progeny. The ability to transform routinely plastids of land plants opens the way to manipulate the process of photosynthesis and to incorporate novel genes into the plastid genome of crops.
Collapse
Affiliation(s)
- Z Svab
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway 08855-0759
| | | |
Collapse
|
29
|
Jones JD, Shlumukov L, Carland F, English J, Scofield SR, Bishop GJ, Harrison K. Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Res 1992; 1:285-97. [PMID: 1338696 DOI: 10.1007/bf02525170] [Citation(s) in RCA: 187] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Progress in plant molecular biology has depended heavily on the availability of effective vectors for plant cell transformation and heterologous expression. In this paper we describe the structures of a wide array of plasmids which have proved extremely effective in (a) plant transformation, (b) expression of heterologous genes and (c) assaying the activity of transposons in transgenic plants. Constructs that confer resistance to kanamycin, hygromycin, streptomycin, spectinomycin and phosphinotricin, or that confer beta-glucuronidase (GUS) gene expression are presented. Binary vector constructs that carry polylinkers of the pUC and Bluescript types are also described. Plasmids that permit the expression of any heterologous reading frame from either nopaline synthase (nos) or octopine synthase (ocs) promoters, as well as the cauliflower mosaic virus 35S promoter, using either the nopaline synthase or octopine synthase 3' polyadenylation sequences, are presented. These constructs permit a choice of orientation of the resulting transgene of interest, relative to the orientation of the selection marker gene. Most of the plasmids described here are publicly available.
Collapse
Affiliation(s)
- J D Jones
- John Innes Centre for Plant Science Research, Norwich Research Park, Colney, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Carrer H, Staub JM, Maliga P. Gentamycin resistance in Nicotiana conferred by AAC(3)-I, a narrow substrate specificity acetyltransferase. PLANT MOLECULAR BIOLOGY 1991; 17:301-3. [PMID: 1650617 DOI: 10.1007/bf00039510] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Affiliation(s)
- H Carrer
- Waksman Institute of Molecular Genetics, Rutgers State University of New Jersey, Piscataway 08855-0759
| | | | | |
Collapse
|