1
|
Zhang X, Ding Z, Lou H, Han R, Ma C, Yang S. A Systematic Review and Developmental Perspective on Origin of CMS Genes in Crops. Int J Mol Sci 2024; 25:8372. [PMID: 39125940 PMCID: PMC11312923 DOI: 10.3390/ijms25158372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cytoplasmic male sterility (CMS) arises from the incompatibility between the nucleus and cytoplasm as typical representatives of the chimeric structures in the mitochondrial genome (mitogenome), which has been extensively applied for hybrid seed production in various crops. The frequent occurrence of chimeric mitochondrial genes leading to CMS is consistent with the mitochondrial DNA (mtDNA) evolution. The sequence conservation resulting from faithfully maternal inheritance and the chimeric structure caused by frequent sequence recombination have been defined as two major features of the mitogenome. However, when and how these chimeric mitochondrial genes appear in the context of the highly conserved reproduction of mitochondria is an enigma. This review, therefore, presents the critical view of the research on CMS in plants to elucidate the mechanisms of this phenomenon. Generally, distant hybridization is the main mechanism to generate an original CMS source in natural populations and in breeding. Mitochondria and mitogenomes show pleomorphic and dynamic changes at key stages of the life cycle. The promitochondria in dry seeds develop into fully functioning mitochondria during seed imbibition, followed by massive mitochondria or mitogenome fusion and fission in the germination stage along with changes in the mtDNA structure and quantity. The mitogenome stability is controlled by nuclear loci, such as the nuclear gene Msh1. Its suppression leads to the rearrangement of mtDNA and the production of heritable CMS genes. An abundant recombination of mtDNA is also often found in distant hybrids and somatic/cybrid hybrids. Since mtDNA recombination is ubiquitous in distant hybridization, we put forward a hypothesis that the original CMS genes originated from mtDNA recombination during the germination of the hybrid seeds produced from distant hybridizations to solve the nucleo-cytoplasmic incompatibility resulting from the allogenic nuclear genome during seed germination.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Zhengpin Ding
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Hongbo Lou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Rui Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
2
|
Makarenko MS, Usatov AV, Tatarinova TV, Azarin KV, Logacheva MD, Gavrilova VA, Kornienko IV, Horn R. Organization Features of the Mitochondrial Genome of Sunflower ( Helianthus annuus L.) with ANN2-Type Male-Sterile Cytoplasm. PLANTS (BASEL, SWITZERLAND) 2019; 8:E439. [PMID: 31652744 PMCID: PMC6918226 DOI: 10.3390/plants8110439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/24/2022]
Abstract
This study provides insights into the flexibility of the mitochondrial genome in sunflower (Helianthus annuus L.) as well as into the causes of ANN2-type cytoplasmic male sterility (CMS). De novo assembly of the mitochondrial genome of male-sterile HA89(ANN2) sunflower line was performed using high-throughput sequencing technologies. Analysis of CMS ANN2 mitochondrial DNA sequence revealed the following reorganization events: twelve rearrangements, seven insertions, and nine deletions. Comparisons of coding sequences from the male-sterile line with the male-fertile line identified a deletion of orf777 and seven new transcriptionally active open reading frames (ORFs): orf324, orf327, orf345, orf558, orf891, orf933, orf1197. Three of these ORFs represent chimeric genes involving atp6 (orf1197), cox2 (orf558), and nad6 (orf891). In addition, orf558, orf891, orf1197, as well as orf933, encode proteins containing membrane domain(s), making them the most likely candidate genes for CMS development in ANN2. Although the investigated CMS phenotype may be caused by simultaneous action of several candidate genes, we assume that orf1197 plays a major role in developing male sterility in ANN2. Comparative analysis of mitogenome organization in sunflower lines representing different CMS sources also allowed identification of reorganization hot spots in the mitochondrial genome of sunflower.
Collapse
Affiliation(s)
- Maksim S Makarenko
- Department of Genetics, Southern Federal University, Rostov-on-Don 344006, Russia.
- The Institute for Information Transmission Problems, Moscow 127051, Russia.
| | - Alexander V Usatov
- Department of Genetics, Southern Federal University, Rostov-on-Don 344006, Russia.
| | - Tatiana V Tatarinova
- The Institute for Information Transmission Problems, Moscow 127051, Russia.
- Department of Biology, University of La Verne, La Verne, CA 91750, USA.
- Vavilov Institute of General Genetics, Moscow 119333, Russia.
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia.
| | - Kirill V Azarin
- Department of Genetics, Southern Federal University, Rostov-on-Don 344006, Russia.
| | - Maria D Logacheva
- The Institute for Information Transmission Problems, Moscow 127051, Russia.
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - Vera A Gavrilova
- The N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint Petersburg 190121, Russia.
| | - Igor V Kornienko
- Department of Genetics, Southern Federal University, Rostov-on-Don 344006, Russia.
- Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia.
| | - Renate Horn
- Institute of Biological Sciences, Plant Genetics, University of Rostock, 18059 Rostock, Germany.
| |
Collapse
|
3
|
Makarenko MS, Kornienko IV, Azarin KV, Usatov AV, Logacheva MD, Markin NV, Gavrilova VA. Mitochondrial genomes organization in alloplasmic lines of sunflower ( Helianthus annuus L.) with various types of cytoplasmic male sterility. PeerJ 2018; 6:e5266. [PMID: 30057860 PMCID: PMC6061164 DOI: 10.7717/peerj.5266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/29/2018] [Indexed: 01/19/2023] Open
Abstract
Background Cytoplasmic male sterility (CMS) is a common phenotype in higher plants, that is often associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce hybrid seeds in a variety of valuable crop species. Investigation of the CMS phenomenon promotes understanding of fundamental issues of nuclear-cytoplasmic interactions in the ontogeny of higher plants. In the present study, we analyzed the structural changes in mitochondrial genomes of three alloplasmic lines of sunflower (Helianthus annuus L.). The investigation was focused on CMS line PET2, as there are very few reports about its mtDNA organization. Methods The NGS sequencing, de novo assembly, and annotation of sunflower mitochondrial genomes were performed. The comparative analysis of mtDNA of HA89 fertile line and two HA89 CMS lines (PET1, PET2) occurred. Results The mtDNA of the HA89 fertile line was almost identical to the HA412 line (NC_023337). The comparative analysis of HA89 fertile and CMS (PET1) analog mitochondrial genomes revealed 11,852 bp inversion, 4,732 bp insertion, 451 bp deletion and 18 variant sites. In the mtDNA of HA89 (PET2) CMS line we determined 27.5 kb and 106.5 kb translocations, 711 bp and 3,780 bp deletions, as well as, 5,050 bp and 15,885 bp insertions. There are also 83 polymorphic sites in the PET2 mitochondrial genome, as compared with the fertile line. Discussion The observed mitochondrial reorganizations in PET1 resulted in only one new open reading frame formation (orfH522), and PET2 mtDNA rearrangements led to the elimination of orf777, duplication of atp6 gene and appearance of four new ORFs with transcription activity specific for the HA89 (PET2) CMS line—orf645, orf2565, orf228 and orf285. Orf228 and orf285 are the atp9 chimeric ORFs, containing transmembrane domains and possibly may impact on mitochondrial membrane potential. So orf228 and orf285 may be the cause for the appearance of the PET2 CMS phenotype, while the contribution of other mtDNA reorganizations in CMS formation is negligible.
Collapse
Affiliation(s)
| | - Igor V Kornienko
- Southern Federal University, Rostov-on-Don, Russia.,Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
| | | | | | - Maria D Logacheva
- Moscow State University, Belozersky Institute of Physical and Chemical Biology, Moscow, Russia
| | | | - Vera A Gavrilova
- The N.I. Vavilov All Russian Institute of Plant Genetic Resources, Saint Petersburg, Russia
| |
Collapse
|
4
|
Chakraborty A, Mitra J, Bhattacharyya J, Pradhan S, Sikdar N, Das S, Chakraborty S, Kumar S, Lakhanpaul S, Sen SK. Transgenic expression of an unedited mitochondrial orfB gene product from wild abortive (WA) cytoplasm of rice (Oryza sativa L.) generates male sterility in fertile rice lines. PLANTA 2015; 241:1463-1479. [PMID: 25754232 DOI: 10.1007/s00425-015-2269-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
Over-expression of the unedited mitochondrial orfB gene product generates male sterility in fertile indica rice lines in a dose-dependent manner. Cytoplasmic male sterility (CMS) and nuclear-controlled fertility restoration are widespread developmental features in plant reproductive systems. In self-pollinated crop plants, these processes often provide useful tools to exploit hybrid vigour. The wild abortive CMS has been employed in the majority of the "three-line" hybrid rice production since 1970s. In the present study, we provide experimental evidence for a positive functional relationship between the 1.1-kb unedited orfB gene transcript, and its translated product in the mitochondria with male sterility. The generation of the 1.1-kb unedited orfB gene transcripts increased during flowering, resulting in low ATP synthase activity in sterile plants. Following insertion of the unedited orfB gene into the genome of male-fertile plants, the plants became male sterile in a dose-dependent manner with concomitant reduction of ATPase activity of F1F0-ATP synthase (complex V). Fertility of the transgenic lines and normal activity of ATP synthase were restored by down-regulation of the unedited orfB gene expression through RNAi-mediated silencing. The genetic elements deciphered in this study could further be tested for their use in hybrid rice development.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
The American cranberry mitochondrial genome reveals the presence of selenocysteine (tRNA-Sec and SECIS) insertion machinery in land plants. Gene 2013; 536:336-43. [PMID: 24342657 DOI: 10.1016/j.gene.2013.11.104] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 01/06/2023]
Abstract
This is the first de novo assembly and annotation of a complete mitochondrial genome in the Ericales order from the American cranberry (Vaccinium macrocarpon Ait.). Moreover, only four complete Asterid mitochondrial genomes have been made publicly available. The cranberry mitochondrial genome was assembled and reconstructed from whole genome 454 Roche GS-FLX and Illumina shotgun sequences. Compared with other Asterids, the reconstruction of the genome revealed an average size mitochondrion (459,678 nt) with relatively little repetitive sequences and DNA of plastid origin. The complete mitochondrial genome of cranberry was annotated obtaining a total of 34 genes classified based on their putative function, plus three ribosomal RNAs, and 17 transfer RNAs. Maternal organellar cranberry inheritance was inferred by analyzing gene variation in the cranberry mitochondria and plastid genomes. The annotation of cranberry mitochondrial genome revealed the presence of two copies of tRNA-Sec and a selenocysteine insertion sequence (SECIS) element which were lost in plants during evolution. This is the first report of a land plant possessing selenocysteine insertion machinery at the sequence level.
Collapse
|
6
|
|
7
|
Das S, Sen S, Chakraborty A, Chakraborti P, Maiti MK, Basu A, Basu D, Sen SK. An unedited 1.1 kb mitochondrial orfB gene transcript in the wild abortive cytoplasmic male sterility (WA-CMS) system of Oryza sativa L. subsp. indica. BMC PLANT BIOLOGY 2010; 10:39. [PMID: 20193092 PMCID: PMC2848759 DOI: 10.1186/1471-2229-10-39] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 03/02/2010] [Indexed: 05/21/2023]
Abstract
BACKGROUND The application of hybrid rice technology has significantly increased global rice production during the last three decades. Approximately 90% of the commercially cultivated rice hybrids have been derived through three-line breeding involving the use of WA-CMS lines. It is believed that during the 21st century, hybrid rice technology will make significant contributions to ensure global food security. This study examined the poorly understood molecular basis of the WA-CMS system in rice. RESULTS RFLPs were detected for atp6 and orfB genes in sterile and fertile rice lines, with one copy of each in the mt-genome. The RNA profile was identical in both lines for atp6, but an additional longer orfB transcript was identified in sterile lines. 5' RACE analysis of the long orfB transcript revealed it was 370 bp longer than the normal transcript, with no indication it was chimeric when compared to the genomic DNA sequence. cDNA clones of the longer orfB transcript in sterile lines were sequenced and the transcript was determined unedited. Sterile lines were crossed with the restorer and maintainer lines, and fertile and sterile F1 hybrids were respectively generated. Both hybrids contained two types of orfB transcripts. However, the long transcript underwent editing in the fertile F1 hybrids and remained unedited in the sterile lines. Additionally, the editing of the 1.1 kb orfB transcript co-segregated with fertility restoring alleles in a segregating population of F2 progeny; and the presence of unedited long orfB transcripts was detected in the sterile plants from the F2 segregating population. CONCLUSION This study helped to assign plausible operative factors responsible for male-sterility in the WA cytoplasm of rice. A new point of departure to dissect the mechanisms governing the CMS-WA system in rice has been identified, which can be applied to further harness the opportunities afforded by hybrid vigor in rice.
Collapse
Affiliation(s)
- Srirupa Das
- Advanced Laboratory for Plant Genetic Engineering (formerly IIT-BREF Biotek), Indian Institute of Technology, Kharagpur- 721302, India
- Dept of Pathology, Baylor College of Medicine, One Baylor Plaza, S209 Houston, Texas 77030, USA
| | - Supriya Sen
- Advanced Laboratory for Plant Genetic Engineering (formerly IIT-BREF Biotek), Indian Institute of Technology, Kharagpur- 721302, India
- Stein Clinical Res Bldg 201, California University, San Diego, La Jolla CA 92093-0673, USA
| | - Anirban Chakraborty
- Advanced Laboratory for Plant Genetic Engineering (formerly IIT-BREF Biotek), Indian Institute of Technology, Kharagpur- 721302, India
| | - Papia Chakraborti
- Advanced Laboratory for Plant Genetic Engineering (formerly IIT-BREF Biotek), Indian Institute of Technology, Kharagpur- 721302, India
- Bramhanand KC College, Kolkata- 700 035, India
| | - Mrinal K Maiti
- Advanced Laboratory for Plant Genetic Engineering (formerly IIT-BREF Biotek), Indian Institute of Technology, Kharagpur- 721302, India
| | - Asitava Basu
- Advanced Laboratory for Plant Genetic Engineering (formerly IIT-BREF Biotek), Indian Institute of Technology, Kharagpur- 721302, India
| | - Debabrata Basu
- Advanced Laboratory for Plant Genetic Engineering (formerly IIT-BREF Biotek), Indian Institute of Technology, Kharagpur- 721302, India
- Bose Institute, Kolkata- 700 009, India
| | - Soumitra K Sen
- Advanced Laboratory for Plant Genetic Engineering (formerly IIT-BREF Biotek), Indian Institute of Technology, Kharagpur- 721302, India
| |
Collapse
|
8
|
Kim DH, Kang JG, Kim BD. Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.). PLANT MOLECULAR BIOLOGY 2007; 63:519-32. [PMID: 17238047 DOI: 10.1007/s11103-006-9106-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 10/30/2006] [Indexed: 05/13/2023]
Abstract
Cytoplasmic male sterility (CMS) in plants is known to be associated with novel open reading frames (ORFs) that result from recombination events in the mitochondrial genome. In this study Southern and Northern blot analyses using several mitochondrial DNA probes were conducted to detect the presence of differing band patterns between male fertile and CMS lines of chili pepper (Capsicum annuum L.). In the CMS pepper, a novel ORF, termed orf456, was found at the 3'-end of the coxll gene. Western blot analysis revealed the expression of an approximately 17-kDa product in the CMS line, and the intensity of expression of this protein was severely reduced in the restorer pepper line. To investigate the functional role of the ORF456 protein in plant mitochondria, we carried out two independent experiments to transform Arabidopsis with a mitochondrion-targeted orf456 gene construct by Agrobacterium-mediated transformation. About 45 % of the T1 transgenic population showed the male-sterile phenotype and no seed set. Pollen grains from semi-sterile T1 plants were observed to have defects on the exine layer and vacuolated pollen phenotypes. It is concluded that this newly discovered orf456 may represent a strong candidate gene--from among the many CMS-associated mitochondrial genes--for determining the male-sterile phenotype of CMS in chili pepper.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Department of Plant Science, College of Agriculture and Life Sciences, and Center for Plant Molecular Genetics and Breeding Research, Seoul National University, Seoul 151-921, Korea
| | | | | |
Collapse
|
9
|
Kim DH, Kim BD. The organization of mitochondrial atp6 gene region in male fertile and CMS lines of pepper (Capsicum annuum L.). Curr Genet 2005; 49:59-67. [PMID: 16328502 DOI: 10.1007/s00294-005-0032-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 09/09/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
The mitochondrial atp6 gene in male fertile (N) and CMS (S) pepper has previously been compared and was found to be present in two copies (Kim et al. in J Kor Soc Hort Sci 42:121-127 2001). In the current study, these atp6 copies were amplified by an inverse PCR technique, and the coding region as well as the 5' and 3' flanking regions were sequenced. The atp6 copies in CMS pepper were detected as one intact gene and one pseudogene, truncated at the 3' coding region. When the atp6 genes in pepper were compared to other plant species, pepper, potato, and petunia all possessed a sequence of 12 identical amino acids at the 3' extended region, which was considered a hallmark of the Solanaceae family. Northern blot analysis showed differences in mRNA band patterns between CMS and restorer lines, indicating that atp6 gene is one of the candidates for CMS in pepper.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Department of Plant Science, College of Agriculture and Life Sciences, and Center for Plant Molecular Genetics & Breeding Research, Seoul National University, Seoul 151-921, Korea
| | | |
Collapse
|
10
|
|
11
|
Horn R, Hustedt JE, Horstmeyer A, Hahnen J, Zetsche K, Friedt W. The CMS-associated 16 kDa protein encoded by orfH522 in the PET1 cytoplasm is also present in other male-sterile cytoplasms of sunflower. PLANT MOLECULAR BIOLOGY 1996; 30:523-538. [PMID: 8605303 DOI: 10.1007/bf00049329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In sunflower plants carrying the PET1 cytoplasm male sterility (CMS) is associated with a new open reading frame (orfH522) in the 3'-flanking region of the atpA gene and an additional 16 kDa protein. Twenty-seven male-sterile cytoplasms of different origin were studied for the expression of the 16 kDa protein. In addition to the PET1 cytoplasm nine other male-sterile cytoplasms express the CMS-associated protein. These CMS sources originate from different interspecific crosses, from spontaneously occurring male-sterile plants in wild sunflower and from induced mutagenesis. Polyclonal antisera were raised against fusion proteins which contain 421 bp of the 3'-coding region of orfH522 to verify by immunological methods the identity of the other CMS cytoplasms. The anti-ORFH522 antiserum showed a positive reaction in the immunoblot with all CMS cytoplasms which expressing the 16 kDa protein. Investigations of the mitochondrial DNA demonstrated that all ten CMS cytoplasms which express the 16 kDa protein have the same organization at the atpA locus. OrfH522 as probes gave the same transcript pattern for the investigated CMS cytoplasms, just as for PET1. The MAX1 cytoplasm has an orfH522-related sequence but does not synthesize the 16 kDa protein. Using the sodium carbonate treatment the 16 kDa protein proved to be membrane-bound. Computer analyses predict that the hydrophobic N-terminal region of ORFH522 may form a transmembrane helix functioning as membrane anchor.
Collapse
Affiliation(s)
- R Horn
- Institut für Pflanzenbau und Pflanzenzüchtung I, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | | | | | |
Collapse
|