1
|
Koo DH, Hong CP, Batley J, Chung YS, Edwards D, Bang JW, Hur Y, Lim YP. Rapid divergence of repetitive DNAs in Brassica relatives. Genomics 2010; 97:173-85. [PMID: 21159321 DOI: 10.1016/j.ygeno.2010.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/16/2010] [Accepted: 12/02/2010] [Indexed: 11/16/2022]
Abstract
Centromeric, subtelomeric, and telomeric repetitive DNAs were characterized in Brassica species and the related Raphanus sativus and Arabidopsis thaliana. In general, rapid divergence of the repeats was found. The centromeric tandem satellite repeats were differentially distributed in the species studied, suggesting that centromeric repeats have diverged during the evolution of the A/C and B genome lineages. Sequence analysis of centromeric repeats suggested rapid evolution. Pericentromere-associated retrotransposons were identified and showed divergence during the evolution of the lineages as centromeric repeats. A novel subtelomeric tandem repeat from B. nigra was found to be conserved across the diploid Brassica genomes; however, this sequence was not identified in the related species. In contrast to previous studies, interstitial telomere-like repeats were identified in the pericentromeres of Brassica chromosomes, and these repeats may be associated with genomic stability. These results provide insight into genome evolution during polyploidization in Brassica and divergence within the Brassicaceae.
Collapse
Affiliation(s)
- Dal-Hoe Koo
- Department of Biological Science, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Hong CP, Kwon SJ, Kim JS, Yang TJ, Park BS, Lim YP. Progress in understanding and sequencing the genome of Brassica rapa. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2008; 2008:582837. [PMID: 18288250 PMCID: PMC2233773 DOI: 10.1155/2008/582837] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 11/21/2007] [Indexed: 05/24/2023]
Abstract
Brassica rapa, which is closely related to Arabidopsis thaliana, is an important crop and a model plant for studying genome evolution via polyploidization. We report the current understanding of the genome structure of B. rapa and efforts for the whole-genome sequencing of the species. The tribe Brassicaceae, which comprises ca. 240 species, descended from a common hexaploid ancestor with a basic genome similar to that of Arabidopsis. Chromosome rearrangements, including fusions and/or fissions, resulted in the present-day "diploid" Brassica species with variation in chromosome number and phenotype. Triplicated genomic segments of B. rapa are collinear to those of A. thaliana with InDels. The genome triplication has led to an approximately 1.7-fold increase in the B. rapa gene number compared to that of A. thaliana. Repetitive DNA of B. rapa has also been extensively amplified and has diverged from that of A. thaliana. For its whole-genome sequencing, the Brassica rapa Genome Sequencing Project (BrGSP) consortium has developed suitable genomic resources and constructed genetic and physical maps. Ten chromosomes of B. rapa are being allocated to BrGSP consortium participants, and each chromosome will be sequenced by a BAC-by-BAC approach. Genome sequencing of B. rapa will offer a new perspective for plant biology and evolution in the context of polyploidization.
Collapse
Affiliation(s)
- Chang Pyo Hong
- Department of Horticulture,
College of Agriculture and Life Science,
Chungnam National University,
Daejeon 305764,
South Korea
| | - Soo-Jin Kwon
- Brassica Genomics Team,
National Institute of Agricultural Biotechnology (NIAB),
Rural Development Administration (RDA),
Suwon 441707,
South Korea
| | - Jung Sun Kim
- Brassica Genomics Team,
National Institute of Agricultural Biotechnology (NIAB),
Rural Development Administration (RDA),
Suwon 441707,
South Korea
| | - Tae-Jin Yang
- Department of Plant Science,
College of Agriculture and Life Sciences,
Seoul National University,
Seoul 151921,
South Korea
| | - Beom-Seok Park
- Brassica Genomics Team,
National Institute of Agricultural Biotechnology (NIAB),
Rural Development Administration (RDA),
Suwon 441707,
South Korea
| | - Yong Pyo Lim
- Department of Horticulture,
College of Agriculture and Life Science,
Chungnam National University,
Daejeon 305764,
South Korea
| |
Collapse
|
3
|
Galvão Bezerra dos Santos K, Becker HC, Ecke W, Bellin U. Molecular characterisation and chromosomal localisation of a telomere-like repetitive DNA sequence highly enriched in the C genome of Brassica. Cytogenet Genome Res 2007; 119:147-53. [PMID: 18160795 DOI: 10.1159/000109632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 04/18/2007] [Indexed: 11/19/2022] Open
Abstract
The aim of this work was to find C genome specific repetitive DNA sequences able to differentiate the homeologous A (B. rapa) and C (B. oleracea) genomes of Brassica, in order to assist in the physical identification of B. napus chromosomes. A repetitive sequence (pBo1.6) highly enriched in the C genome of Brassica was cloned from B. oleracea and its chromosomal organisation was investigated through fluorescent in situ hybridisation (FISH) in B. oleracea (2n = 18, CC), B. rapa (2n = 20, AA) and B. napus (2n = 38, AACC) genomes. The sequence was 203 bp long with a GC content of 48.3%. It showed up to 89% sequence identity with telomere-like DNA from many plant species. This repeat was clearly underrepresented in the A genome and the in situ hybridisation showed its B. oleracea specificity at the chromosomal level. Sequence pBo1.6 was localised at interstitial and/or telomeric/subtelomeric regions of all chromosomes from B. oleracea, whereas in B. rapa no signal was detected in most of the cells. In B. napus 18 to 24 chromosomes hybridised with pBo1.6. The discovery of a sequence highly enriched in the C genome of Brassica opens the opportunity for detailed studies regarding the subsequent evolution of DNA sequences in polyploid genomes. Moreover, pBo1.6 may be useful for the determination of the chromosomal location of transgenic DNA in genetically modified oilseed rape.
Collapse
|
4
|
Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY, Kwon SJ, Kim J, Choi BS, Lim MH, Jin M, Kim HI, de Jong H, Bancroft I, Lim Y, Park BS. Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:173-83. [PMID: 17156411 DOI: 10.1111/j.1365-313x.2006.02952.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report the identification and characterization of the major repeats in the centromeric and peri-centromeric heterochromatin of Brassica rapa. The analysis involved the characterization of 88 629 bacterial artificial chromosomes (BAC) end sequences and the complete sequences of two BAC clones. We identified centromere-specific retrotransposons of Brassica (CRB) and various peri-centromere-specific retrotransposons (PCRBr). Three copies of the CRB were identified in one BAC clone as nested insertions within a tandem array of 24 copies of a 176 bp centromeric repeat, CentBr. A complex mosaic structure consisting of nine PCRBr elements and large blocks of 238 bp degenerate tandem repeats (TR238) were found in or near a derivative of 5S-25S rDNA sequences. The chromosomal positions of selected repeats were determined using in situ hybridization. These revealed that CRB is a major component of all centromeres in three diploid Brassica species and their allotetraploid relatives. However, CentBr was not detected in the most distantly related of the diploid species analyzed, B. nigra. PCRBr and TR238 were found to be major components in the peri-centromeric heterochromatin blocks of four chromosomes of B. rapa. These repetitive elements were not identified in B. oleracea or B. nigra, indicating that they are A-genome-specific. GenBank accession numbers: KBrH001P13 (AC 166739); KBrH015B20 (AC 166740); end sequences of KBrH BAC library (CW 978640 - CW 988843); end sequences of KBrS BAC library (DU 826965 - DU 835595); end sequences of KBrB BAC library (DX 010661 - DX 083363).
Collapse
MESH Headings
- Brassica/genetics
- Brassica rapa/genetics
- Centromere/genetics
- Chromosome Banding
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Plant/genetics
- Cloning, Molecular
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Genome, Plant
- In Situ Hybridization, Fluorescence
- Models, Biological
- Molecular Sequence Data
- Polyploidy
- Retroelements/genetics
- Sequence Analysis, DNA
- Tandem Repeat Sequences
Collapse
Affiliation(s)
- Ki-Byung Lim
- National Institute of Agricultural Biotechnology (NIAB), Rural Development Administration (RDA), Suwon 441-707 [corrected] Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Heslop-Harrison JS, Brandes A, Schwarzacher T. Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species. Chromosome Res 2004; 11:241-53. [PMID: 12769291 DOI: 10.1023/a:1022998709969] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite their common function, centromeric DNA sequences are not conserved between organisms. Most centromeres of animals and plants so far investigated have now been shown to consist of large blocks of tandemly repeated satellite sequences that are embedded in recombination-deficient heterochromatic regions. This central domain of satellite sequences that is postulated to mediate spindle attachment is surrounded by pericentromeric sequences incorporating various classes of repetitive sequences often including retroelements. The centromeric satellite DNA sequences are amongst the most rapidly evolving sequences and pose some fundamental problems of maintaining function. In this overview, we will discuss work on centromeric repetitive sequences in Arabidopsis thaliana and its relatives, and highlight some of the common features that are emerging when analysing closely related species.
Collapse
Affiliation(s)
- J S Heslop-Harrison
- CREST Project, Department of Biology, University of Leicester, Leicester LE1 7RH, UK.
| | | | | |
Collapse
|
6
|
Liu K, Somerville S. Cloning and characterization of a highly repeated DNA sequence in Hordeum vulgare L. Genome 1996; 39:1159-68. [PMID: 8983185 DOI: 10.1139/g96-146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A novel repetitive DNA sequence, R10hvcop, has been identified in the barley (Hordeum vulgare L.) genome. This 830 base pair (bp) DNA sequence has a 606-bp open reading frame and is present as approximately 1.96 x 10(5) copies per haploid barley genome. Southern blot analysis revealed that repetitive DNA elements containing R10hvcop and related sequences were dispersed within the barley chromosomes. Sequences similar to R10hvcop were also found in wheat (Triticum aestivum L.), rye (Secale cereale L.), and oat (Avena sativa L.) with copy numbers of 8 x 10(4), 1.39 x 10(5), and 7.9 x 10(4) per haploid genome, respectively. Sequences similar to R10hvcop were also present in the corn (Zea mays L. ssp. mays) genome, but they were not highly repeated. Barley, wheat, rye, oat, and corn showed species-specific restriction fragment length polymorphisms of R10hvcop and related sequences. Computer-based similarity searches revealed that R10hvcop is closely related to reverse transcriptase genes in retrotransposon-like elements of several plant species and of Drosophila. The highly repetitive nature, interspersed distribution, and high degree of similarity to reverse transcriptase genes suggests that R10hvcop contains the sequence of a diverged reverse transcriptase gene.
Collapse
Affiliation(s)
- K Liu
- Michigan State University, United States Department of Energy Plant Research Laboratory, East Lansing 48824, USA
| | | |
Collapse
|
7
|
Da Rocha PS, Bertrand H. Structure and comparative analysis of the rDNA intergenic spacer of Brassica rapa. Implications for the function and evolution of the Cruciferae spacer. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 229:550-7. [PMID: 7744079 DOI: 10.1111/j.1432-1033.1995.tb20497.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sequence of the intergenic spacer (IGS) of the Brassica rapa rDNA was determined and compared with those of other Cruciferae species. In the 3012-bp IGS, two segments of mostly unique sequence flank a 1.5-kb region consisting of two tandem arrays of repeats. A putative transcription initiation site (TIS) was identified by sequence comparison, 395 bp downstream from the repeat region. The intercalating segment displays unusual sequence patterns, and modelling of its topology predicts intrinsically bent DNA, with two elements of bending centered at positions -118 and -288 relative to the TIS. Comparative analysis of spacers from Cruciferae, revealed a common organization and high sequence similarity in their 5' and, particularly, 3' regions, whereas the repeat region upstream of TIS diverges rapidly. The conservation of structural elements, including the bent DNA upstream from the TIS, is discussed in light of their possible involvement in the IGS functions and structure of spacers in common ancestors. Examination of the Cruciferae spacers shows that, in addition to unequal crossover and gene conversion, insertional mutagenesis and replication slippage are molecular mechanisms significantly contributing to their evolution.
Collapse
Affiliation(s)
- P S Da Rocha
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|