1
|
Amaral DT, Bonatelli IAS, Romeiro-Brito M, Telhe MC, Moraes EM, Zappi DC, Taylor NP, Franco FF. Comparative transcriptome analysis reveals lineage- and environment-specific adaptations in cacti from the Brazilian Atlantic Forest. PLANTA 2024; 260:4. [PMID: 38775846 DOI: 10.1007/s00425-024-04442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Natural selection influenced adaptive divergence between Cereus fernambucensis and Cereus insularis, revealing key genes governing abiotic stress responses and supporting neoteny in C. insularis. Uncovering the molecular mechanisms driving adaptive divergence in traits related to habitat adaptation remains a central challenge. In this study, we focused on the cactus clade, which includes Cereus sericifer F.Ritter, Cereus fernambucensis Lem., and Cereus insularis Hemsley. These allopatric species inhabit distinct relatively drier regions within the Brazilian Atlantic Forest, each facing unique abiotic conditions. We leveraged whole transcriptome data and abiotic variables datasets to explore lineage-specific and environment-specific adaptations in these species. Employing comparative phylogenetic methods, we identified genes under positive selection (PSG) and examined their association with non-synonymous genetic variants and abiotic attributes through a PhyloGWAS approach. Our analysis unveiled signatures of selection in all studied lineages, with C. fernambucensis northern populations and C. insularis showing the most PSGs. These PSGs predominantly govern abiotic stress regulation, encompassing heat tolerance, UV stress response, and soil salinity adaptation. Our exclusive observation of gene expression tied to early developmental stages in C. insularis supports the hypothesis of neoteny in this species. We also identified genes associated with abiotic variables in independent lineages, suggesting their role as environmental filters on genetic diversity. Overall, our findings suggest that natural selection played a pivotal role in the geographic range of these species in response to environmental and biogeographic transitions.
Collapse
Affiliation(s)
- Danilo T Amaral
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, São Paulo, Brazil
| | - Isabel A S Bonatelli
- Departamento de Ecologia e Biologia Evolutiva, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Monique Romeiro-Brito
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Milena C Telhe
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP 264, Sorocaba, 18052-780, Brazil
| | - Evandro M Moraes
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP 264, Sorocaba, 18052-780, Brazil
| | - Daniela Cristina Zappi
- Programa de Pós-Graduação em Botânica, Instituto de Ciências Biológicas, Universidade de Brasília (UNB), Brasília, Brazil
| | - Nigel Paul Taylor
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP 264, Sorocaba, 18052-780, Brazil
| | - Fernando F Franco
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP 264, Sorocaba, 18052-780, Brazil.
| |
Collapse
|
2
|
Zhou SM, Wang F, Yan SY, Zhu ZM, Gao XF, Zhao XL. Phylogenomics and plastome evolution of Indigofera (Fabaceae). FRONTIERS IN PLANT SCIENCE 2023; 14:1186598. [PMID: 37346129 PMCID: PMC10280451 DOI: 10.3389/fpls.2023.1186598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
Introduction Indigofera L. is the third largest genus in Fabaceae and includes economically important species that are used for indigo dye-producing, medicinal, ornamental, and soil and water conservation. The genus is taxonomically difficult due to the high level of overlap in morphological characters of interspecies, fewer reliability states for classification, and extensive adaptive evolution. Previous characteristic-based taxonomy and nuclear ITS-based phylogenies have contributed to our understanding of Indigofera taxonomy and evolution. However, the lack of chloroplast genomic resources limits our comprehensive understanding of the phylogenetic relationships and evolutionary processes of Indigofera. Methods Here, we newly assembled 18 chloroplast genomes of Indigofera. We performed a series of analyses of genome structure, nucleotide diversity, phylogenetic analysis, species pairwise Ka/Ks ratios, and positive selection analysis by combining with allied species in Papilionoideae. Results and discussion The chloroplast genomes of Indigofera exhibited highly conserved structures and ranged in size from 157,918 to 160,040 bp, containing 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Thirteen highly variable regions were identified, of which trnK-rbcL, ndhF-trnL, and ycf1 were considered as candidate DNA barcodes for species identification of Indigofera. Phylogenetic analysis using maximum likelihood (ML) and Bayesian inference (BI) methods based on complete chloroplast genome and protein-coding genes (PCGs) generated a well-resolved phylogeny of Indigofera and allied species. Indigofera monophyly was strongly supported, and four monophyletic lineages (i.e., the Pantropical, East Asian, Tethyan, and Palaeotropical clades) were resolved within the genus. The species pairwise Ka/Ks ratios showed values lower than 1, and 13 genes with significant posterior probabilities for codon sites were identified in the positive selection analysis using the branch-site model, eight of which were associated with photosynthesis. Positive selection of accD suggested that Indigofera species have experienced adaptive evolution to selection pressures imposed by their herbivores and pathogens. Our study provided insight into the structural variation of chloroplast genomes, phylogenetic relationships, and adaptive evolution in Indigofera. These results will facilitate future studies on species identification, interspecific and intraspecific delimitation, adaptive evolution, and the phylogenetic relationships of the genus Indigofera.
Collapse
Affiliation(s)
- Sheng-Mao Zhou
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| | - Fang Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| | - Si-Yuan Yan
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science and Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, China
| | - Xin-Fen Gao
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xue-Li Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| |
Collapse
|
3
|
Xiao Z, Huang C, Ge H, Wang Y, Duan X, Wang G, Zheng L, Dong J, Huang X, Zhang Y, An H, Xu W, Wang Y. Proximity Labeling Facilitates Defining the Proteome Neighborhood of Photosystem II Oxygen Evolution Complex in a Model Cyanobacterium. Mol Cell Proteomics 2022; 21:100440. [PMID: 36356940 PMCID: PMC9764255 DOI: 10.1016/j.mcpro.2022.100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Ascorbate peroxidase (APEX)-based proximity labeling coupled with mass spectrometry has a great potential for spatiotemporal identification of proteins proximal to a protein complex of interest. Using this approach is feasible to define the proteome neighborhood of important protein complexes in a popular photosynthetic model cyanobacterium Synechocystis sp. PCC6803 (hereafter named as Synechocystis). To this end, we developed a robust workflow for APEX2-based proximity labeling in Synechocystis and used the workflow to identify proteins proximal to the photosystem II (PS II) oxygen evolution complex (OEC) through fusion APEX2 with a luminal OEC subunit, PsbO. In total, 38 integral membrane proteins (IMPs) and 93 luminal proteins were identified as proximal to the OEC. A significant portion of these proteins are involved in PS II assembly, maturation, and repair, while the majority of the rest were not previously implicated with PS II. The IMPs include subunits of PS II and cytochrome b6/f, but not of photosystem I (except for PsaL) and ATP synthases, suggesting that the latter two complexes are spatially separated from the OEC with a distance longer than the APEX2 labeling radius. Besides, the topologies of six IMPs were successfully predicted because their lumen-facing regions exclusively contain potential APEX2 labeling sites. The luminal proteins include 66 proteins with a predicted signal peptide and 57 proteins localized also in periplasm, providing important targets to study the regulation and selectivity of protein translocation. Together, we not only developed a robust workflow for the application of APEX2-based proximity labeling in Synechocystis and showcased the feasibility to define the neighborhood proteome of an important protein complex with a short radius but also discovered a set of the proteins that potentially interact with and regulate PS II structure and function.
Collapse
Affiliation(s)
- Zhen Xiao
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Duan
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gaojie Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Limin Zheng
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Dong
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongyu An
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Lan Y, Chen Q, Kong M, Liu Y, Lyu MJA, Perveen S, Mi H. PetM Is Essential for the Stabilization and Function of the Cytochrome b6f Complex in Arabidopsis. PLANT & CELL PHYSIOLOGY 2021; 62:1603-1614. [PMID: 34283246 DOI: 10.1093/pcp/pcab116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The cytochrome b6f (cyt b6f) acts as a common linker of electron transport between photosystems I and II in oxygenic photosynthesis. PetM, one of eight subunits of the cyt b6f complex, is a small hydrophobic subunit at the outside periphery, the functional mechanism of which remains to be elucidated in higher plants. In this work, we found that unlike the PetM mutant in Synechocystis sp. PCC 6803, the Arabidopsis thaliana PetM mutant showed a bleached phenotype with yellowish leaves, block of photosynthetic electron transport and loss of photo-autotrophy, similar to the Arabidopsis PetC mutant. Although PetM is relatively conserved between higher plants and cyanobacteria, Synechocystis PetM could not rescue the PetM-knockout phenotype in Arabidopsis. We provide evidence that the Synechocystis PetM did not stably bind to the Arabidopsis cyt b6f complex. Based on these results, we suggest that PetM is required by Arabidopsis to maintain the function of the cyt b6f complex, likely through its close link with core subunits to form a tight 'fence' that stabilizes the core of the complex.
Collapse
Affiliation(s)
- Yixin Lan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai 200032, China
| | - Mengmeng Kong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai 200032, China
| | - Yanyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Ju Amy Lyu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai 200032, China
| | - Shahnaz Perveen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai 200032, China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
5
|
Ramos S, Le Sueur AL, Horness RE, Specker JT, Collins JA, Thibodeau KE, Thielges MC. Heterogeneous and Highly Dynamic Interface in Plastocyanin-Cytochrome f Complex Revealed by Site-Specific 2D-IR Spectroscopy. J Phys Chem B 2019; 123:2114-2122. [PMID: 30742428 DOI: 10.1021/acs.jpcb.8b12157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transient protein complexes are crucial for sustaining dynamic cellular processes. The complexes of electron-transfer proteins are a notable example, such as those formed by plastocyanin (Pc) and cytochrome f (cyt f) in the photosynthetic apparatus. The dynamic and heterogeneous nature of these complexes, however, makes their study challenging. To better elucidate the complex of Nostoc Pc and cyt f, 2D-IR spectroscopy coupled to site-specific labeling with cyanophenylalanine infrared (IR) probes was employed to characterize how the local environments at sites along the surface of Pc were impacted by cyt f binding. The results indicate that Pc most substantially engages with cyt f via the hydrophobic patch around the copper redox site. Complexation with cyt f led to an increase in inhomogeneous broadening of the probe absorptions, reflective of increased heterogeneity of interactions with their environment. Notably, most of the underlying states interconverted very rapidly (1 to 2 ps), suggesting a complex with a highly mobile interface. The data support a model of the complex consisting of a large population of an encounter complex. Additionally, the study demonstrates the application of 2D-IR spectroscopy with site-specifically introduced probes to reveal new quantitative insight about dynamic biochemical systems.
Collapse
Affiliation(s)
- Sashary Ramos
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Amanda L Le Sueur
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Rachel E Horness
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Jonathan T Specker
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Jessica A Collins
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Katherine E Thibodeau
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Megan C Thielges
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| |
Collapse
|
6
|
Coordinated downregulation of the photosynthetic apparatus as a protective mechanism against UV exposure in the diatom Corethron hystrix. Appl Microbiol Biotechnol 2019; 103:1837-1850. [PMID: 30617536 DOI: 10.1007/s00253-018-9544-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/07/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
Abstract
The effect of ultraviolet radiation (UVR) on photosynthetic efficiency and the resulting mechanisms against UV exposure employed by phytoplankton are not completely understood. To address this knowledge gap, we developed a novel close-coupled, wavelength-configurable platform designed to produce precise and repeatable in vitro irradiation of Corethron hystrix, a member of a genera found abundantly in the Southern Ocean where UV exposure is high. We aimed to determine its metabolic, protective, and repair mechanisms as a function of varying levels of specific electromagnetic energy. Our results show that the physiological responses to each energy level of UV have a negative linear decrease in the photosynthetic efficiency of photosystem II proportional to UV intensity, corresponding to a large increase in the turnover time of quinone reoxidation. Gene expression changes of photosystem II-related reaction center proteins D1, CP43, and CP47 showed coordinated downregulation whereas the central metabolic pathway demonstrated mixed expression of up and downregulated transcripts after UVR exposure. These results suggest that while UVR may damage photosynthetic machinery, oxidative damage may limit production of new photosynthetic and electron transport complexes as a result of UVR exposure.
Collapse
|
7
|
Nagarajan D, Sukumaran S, Deka G, Krishnamurthy K, Atreya HS, Chandra N. Design of a heme-binding peptide motif adopting a β-hairpin conformation. J Biol Chem 2018; 293:9412-9422. [PMID: 29695501 DOI: 10.1074/jbc.ra118.001768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/19/2018] [Indexed: 11/06/2022] Open
Abstract
Heme-binding proteins constitute a large family of catalytic and transport proteins. Their widespread presence as globins and as essential oxygen and electron transporters, along with their diverse enzymatic functions, have made them targets for protein design. Most previously reported designs involved the use of α-helical scaffolds, and natural peptides also exhibit a strong preference for these scaffolds. However, the reason for this preference is not well-understood, in part because alternative protein designs, such as those with β-sheets or hairpins, are challenging to perform. Here, we report the computational design and experimental validation of a water-soluble heme-binding peptide, Pincer-1, composed of predominantly β-scaffold secondary structures. Such heme-binding proteins are rarely observed in nature, and by designing such a scaffold, we simultaneously increase the known fold space of heme-binding proteins and expand the limits of computational design methods. For a β-scaffold, two tryptophan zipper β-hairpins sandwiching a heme molecule were linked through an N-terminal cysteine disulfide bond. β-Hairpin orientations and residue selection were performed computationally. Heme binding was confirmed through absorbance experiments and surface plasmon resonance experiments (KD = 730 ± 160 nm). CD and NMR experiments validated the β-hairpin topology of the designed peptide. Our results indicate that a helical scaffold is not essential for heme binding and reveal the first designed water-soluble, heme-binding β-hairpin peptide. This peptide could help expand the search for and design space to cytoplasmic heme-binding proteins.
Collapse
Affiliation(s)
| | | | - Geeta Deka
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
8
|
Yang Y, Zhou T, Duan D, Yang J, Feng L, Zhao G. Comparative Analysis of the Complete Chloroplast Genomes of Five Quercus Species. FRONTIERS IN PLANT SCIENCE 2016; 7:959. [PMID: 27446185 PMCID: PMC4923075 DOI: 10.3389/fpls.2016.00959] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/15/2016] [Indexed: 05/08/2023]
Abstract
Quercus is considered economically and ecologically one of the most important genera in the Northern Hemisphere. Oaks are taxonomically perplexing because of shared interspecific morphological traits and intraspecific morphological variation, which are mainly attributed to hybridization. Universal plastid markers cannot provide a sufficient number of variable sites to explore the phylogeny of this genus, and chloroplast genome-scale data have proven to be useful in resolving intractable phylogenetic relationships. In this study, the complete chloroplast genomes of four Quercus species were sequenced, and one published chloroplast genome of Quercus baronii was retrieved for comparative analyses. The five chloroplast genomes ranged from 161,072 bp (Q. baronii) to 161,237 bp (Q. dolicholepis) in length, and their gene organization and order, and GC content, were similar to those of other Fagaceae species. We analyzed nucleotide substitutions, indels, and repeats in the chloroplast genomes, and found 19 relatively highly variable regions that will potentially provide plastid markers for further taxonomic and phylogenetic studies within Quercus. We observed that four genes (ndhA, ndhK, petA, and ycf1) were subject to positive selection. The phylogenetic relationships of the Quercus species inferred from the chloroplast genomes obtained moderate-to-high support, indicating that chloroplast genome data may be useful in resolving relationships in this genus.
Collapse
Affiliation(s)
| | | | | | | | | | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi’an, China
| |
Collapse
|
9
|
Induction of caspase-3-like activity in rice following release of cytochrome-f from the chloroplast and subsequent interaction with the ubiquitin-proteasome system. Sci Rep 2014; 4:5989. [PMID: 25103621 PMCID: PMC4125987 DOI: 10.1038/srep05989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
It has been known that the process of leaf senescence is accompanied by programmed cell death (PCD), and the previous study indicated that dark-induced senescence in detached leaves from rice led to the release of cytochrome f (Cyt f) from chloroplast into the cytoplasm. In this study, the effects of Cyt f on PCD were studied both in vitro and in vivo. In a cell-free system, purified Cyt f activated caspase-3-like protease and endonuclease OsNuc37, and induced DNA fragmentation. Furthermore, Cyt f-induced caspase-3-like activity could be inhibited by MG132, which suggests that the activity was attributed to the 26S proteasome. Conditional expression of Cyt f in the cytoplasm could also activate caspase-3-like activity and DNA fragmentation. Fluorescein diacetate staining and annexin V-FITC/PI double staining demonstrated that Cyt f expression in cytoplasm significantly increased the percentage of PCD protoplasts. Yeast two-hybrid screening showed that Cyt f might interact with E3-ubiquitin ligase and RPN9b, the subunits of the ubiquitin proteasome system (UPS), and other PCD-related proteins. Taken together, these results suggest that the released Cyt f from the chloroplast into the cytoplasm might activate or rescue caspase-3-like activity by interacting with the UPS, ultimately leading to the induction of PCD.
Collapse
|
10
|
Kallas T. Cytochrome b 6 f Complex at the Heart of Energy Transduction and Redox Signaling. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Zuppini A, Gerotto C, Moscatiello R, Bergantino E, Baldan B. Chlorella saccharophila cytochrome f and its involvement in the heat shock response. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4189-200. [PMID: 19773387 PMCID: PMC2755035 DOI: 10.1093/jxb/erp264] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/15/2009] [Accepted: 07/30/2009] [Indexed: 05/08/2023]
Abstract
Cytochrome f is an essential component of the major redox complex of the thylakoid membrane. Cloning and characterization are presented here of a novel partial cDNA (ChspetA) encoding cytochrome f in the psychrophile unicellular green alga Chlorella saccharophila and its involvement in the heat shock (HS) response pathway has been analysed. Semi-quantitative reverse transcriptase PCR analysis showed that ChspetA expression is up-regulated in heat-shocked cells and the protein profile of cytochrome f highlighted a release of cytochrome f into the cytosol depending on the time lapse from the HS. Evans Blue assay, analysis of chromatin condensation, and chloroplast alterations showed the induction of cell death in cell suspensions treated with cytosolic extracts from heat-shocked cells. This study identifies cytochrome f in C. saccharophila that seems to be involved in the HS-induced programmed cell death process. The data suggest that cytochrome f fulfils its role through a modulation of its transcription and translation levels, together with its intracellular localization. This work focuses on a possible role of cytochrome f into the programmed cell death-like process in a unicellular chlorophyte and suggests the existence of chloroplast-mediated programmed cell death machinery in an organism belonging to one of the primary lineages of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Anna Zuppini
- Dipartimento di Biologia, Università di Padova, via U. Bassi 58/B, 35131 Padova, Italy.
| | | | | | | | | |
Collapse
|
12
|
Díaz-Moreno I, Muñoz-López FJ, Frutos-Beltrán E, De la Rosa MA, Díaz-Quintana A. Electrostatic strain and concerted motions in the transient complex between plastocyanin and cytochrome f from the cyanobacterium Phormidium laminosum. Bioelectrochemistry 2009; 77:43-52. [PMID: 19616485 DOI: 10.1016/j.bioelechem.2009.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 06/04/2009] [Accepted: 06/04/2009] [Indexed: 11/15/2022]
Abstract
Many fleeting macromolecular interactions, like those being involved in electron transport, are essential in biology. However, little is known about the behaviour of the partners and their dynamics within their short-lived complex. To tackle such issue, we have performed molecular dynamics simulations on an electron transfer complex formed by plastocyanin and cytochrome f from the cyanobacterium Phormidium laminosum. Besides simulations of the isolated partners, two independent trajectories of the complex were calculated, starting from the two different conformations in the NMR ensemble. The first one leads to a more stable ensemble with a shorter distance between the metal sites of the two partners. The second experiences a significant drift of the complex conformation. Analyses of the distinct calculations show that the conformation of cytochrome f is strained upon binding of its partner, and relaxes upon its release. Interestingly, the principal component analysis of the trajectories indicates that plastocyanin displays a concerted motion with the small domain of cytochrome f that can be attributed to electrostatic interactions between the two proteins.
Collapse
Affiliation(s)
- Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla and C.S.I.C.), Spain
| | | | | | | | | |
Collapse
|
13
|
Gudynaite-Savitch L, Loiselay C, Savitch LV, Simmonds J, Kohalmi SE, Choquet Y, Hüner NPA. The small domain of cytochrome f from the psychrophile Chlamydomonas raudensis UWO 241 modulates the apparent molecular mass and decreases the accumulation of cytochrome f in the mesophile Chlamydomonas reinhardtii. Biochem Cell Biol 2008; 85:616-27. [PMID: 17901903 DOI: 10.1139/o07-066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome f from the psychrophile Chlamydomonas raudensis UWO 241 has a lower thermostability of its c-type heme and an apparent molecular mass that is 7 kDa lower than that of the model mesophilic green alga Chlamydomonas reinhardtii. We combined chloroplast transformation, site-directed mutagensis, and the creation of chimeric fusion constructs to assess the contribution of specific domains and (or) amino acids residues to the structure, stability, and accumulation of cytochrome f, as well as its function in photosynthetic intersystem electron transport. We demonstrate that differences in the amino acid sequence of the small domain and specific charged amino acids in the large domain of cytochrome f alter the physical properties of this protein but do not affect either the thermostability of the c-type heme, the apparent half-life of cytochrome f in the presence of the chloroplastic protein synthesis inhibitor chloramphenicol, or the capacity for photosynthetic intersystem electron transport, measured as e-/P700. However, pulse-labeling with [14C]acetate, combined with immunoblotting, indicated that the negative autoregulation of cytochrome f accumulation observed in mesophilic C. reinhardtii transformed with chimeric constructs from the psychrophile was likely the result of the defective association of the chimeric forms of cytochrome f with the other subunits of the cytochrome b6/f complex native to the C. reinhardtii wild type. These results are discussed in terms of the unique fatty acid composition of the thylakoid membranes of C. raudensis UWO 241 adapted to cold environments.
Collapse
Affiliation(s)
- Loreta Gudynaite-Savitch
- Department of Biology and The Biotron, University of Western Ontario, London, ON N6A 5B7, Canada.
| | | | | | | | | | | | | |
Collapse
|
14
|
Lyska D, Paradies S, Meierhoff K, Westhoff P. HCF208, a Homolog of Chlamydomonas CCB2, is Required for Accumulation of Native Cytochrome b6 in Arabidopsis thaliana. ACTA ACUST UNITED AC 2007; 48:1737-46. [DOI: 10.1093/pcp/pcm146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Gross EL. A Brownian Dynamics computational study of the interaction of spinach plastocyanin with turnip cytochrome f: the importance of plastocyanin conformational changes. PHOTOSYNTHESIS RESEARCH 2007; 94:411-422. [PMID: 17972160 DOI: 10.1007/s11120-007-9192-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 05/01/2007] [Indexed: 05/25/2023]
Abstract
Brownian Dynamics (BD) computer simulations were used to study electrostatic interactions between turnip cytochrome f (cyt f) and spinach plastocyanin (PC). Three different spinach PC structures were studied: The X-ray crystal structure of Xue and coworkers [(1998) Protein Sci 7:2099-2105] and the NMR structure of Musiani et al. [(2005) J Biol Chem 280:18833-18841] and Ubbink and co-workers [(1998) Structure 6:323-335]. Significant differences exist in the backbone conformation between the PC taken from Ubbink and coworkers and the other two PC structures particularly the regions surrounding G10, E59-E60, and D51. Complexes formed in BD simulations using the PC of Ubbink and colleagues had a smaller Cu-Fe distance than the other two. These results suggest that different PC conformations may exist in solution with different capabilities of forming electron-transfer-active docks. All three types of complexes show electrostatic contacts between D42, E43, and D44 on PC and K187 on cyt f as well as between E59 on PC and K58 on cyt f. However, the PC of Ubbink and coworkers reveals additional contacts between D51 and cyt f as a result of the difference in backbone configuration. A second minor complex component was observed for the PC of Ubbink and co-workers and Xue and co-workers which had contacts between K187 on cyt f and E59 and E60 on PC rather than between K187 on cyt f and D42-D44 on PC as observed for the major components. This second type of complex may represent an earlier complex which rearranges to form a final complex capable of electron transfer.
Collapse
Affiliation(s)
- Elizabeth L Gross
- Department of Biochemistry, The Ohio State University, 484 W. 12th. Ave, Columbus, OH 43235, USA.
| |
Collapse
|
16
|
Díaz-Moreno I, Díaz-Moreno S, Subías G, De la Rosa MA, Díaz-Quintana A. The atypical iron-coordination geometry of cytochrome f remains unchanged upon binding to plastocyanin, as inferred by XAS. PHOTOSYNTHESIS RESEARCH 2006; 90:23-8. [PMID: 17111237 PMCID: PMC1769345 DOI: 10.1007/s11120-006-9102-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Accepted: 08/25/2006] [Indexed: 05/12/2023]
Abstract
The transient complex between cytochrome f and plastocyanin from the cyanobacterium Nostoc sp. PCC 7119 has been analysed by X-ray Absorption Spectroscopy in solution, using both proteins in their oxidized and reduced states. Fe K-edge data mainly shows that the atypical metal coordination geometry of cytochrome f, in which the N-terminal amino acid acts as an axial ligand of the heme group, remains unaltered upon binding to its redox partner, plastocyanin. This fact suggests that cytochrome f provides a stable binding site for plastocyanin and minimizes the reorganization energy required in the transient complex formation, which could facilitate the electron transfer between the two redox partners.
Collapse
Affiliation(s)
- Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, 41092, Sevilla, Spain.
| | | | | | | | | |
Collapse
|
17
|
Gudynaite-Savitch L, Gretes M, Morgan-Kiss RM, Savitch LV, Simmonds J, Kohalmi SE, Hüner NPA. Cytochrome f from the Antarctic psychrophile, Chlamydomonas raudensis UWO 241: structure, sequence, and complementation in the mesophile, Chlamydomonas reinhardtii. Mol Genet Genomics 2006; 275:387-98. [PMID: 16425016 DOI: 10.1007/s00438-005-0094-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
Although cytochrome f from the Antarctic psychrophile, Chlamydomonas raudensis UWO 241, exhibits a lower apparent molecular mass (34 kD) than that of the mesophile C. reinhardtii (41 kD) based on SDS-PAGE, both proteins are comparable in calculated molecular mass and show 79% identity in amino acid sequence. The difference in apparent molecular mass was maintained after expression of petA from both Chlamydomonas species in either E. coli or a C. reinhardtii DeltapetA mutant and after substitution of a unique third cysteine-292 to phenylalanine in the psychrophilic cytochrome f. Moreover, the heme of the psychrophilic form of cytochrome f was less stable upon heating than that of the mesophile. In contrast to C. raudensis, a C. reinhardtii DeltapetA mutant transformed with petA from C. raudensis exhibited the ability to undergo state transitions and a capacity for intersystem electron transport comparable to that of C. reinhardtii wild type. However, the C. reinhardtii petA transformants accumulated lower levels of cytochrome b ( 6 ) /f complexes and exhibited lower light saturated rates of O(2) evolution than C. reinhardtii wild type. We show that the presence of an altered form of cytochrome f in C. raudensis does not account for its inability to undergo state transitions or its impaired capacity for intersystem electron transport as previously suggested. A combined survey of the apparent molecular mass, thermal stability and amino acid sequences of cytochrome f from a broad range of mesophilic species shows unequivocally that the observed differences in cytochrome f structure are not related to psychrophilly. Thus, caution must be exercised in relating differences in amino acid sequence and thermal stability to adaptation to cold environments.
Collapse
|
18
|
Haddadian EJ, Gross EL. A Brownian dynamics study of the effects of cytochrome f structure and deletion of its small domain in interactions with cytochrome c6 and plastocyanin in Chlamydomonas reinhardtii. Biophys J 2006; 90:566-77. [PMID: 16239335 PMCID: PMC1367061 DOI: 10.1529/biophysj.105.067058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 09/13/2005] [Indexed: 11/18/2022] Open
Abstract
The availability of seven different structures of cytochrome f (cyt f) from Chlamydomonas reinhardtii allowed us, using Brownian dynamics simulations, to model interactions between these molecules and their redox partners, plastocyanin (PC) and cytochrome c6 (cyt c6) in the same species to study the effect of cyt f structure on its function. Our results showed that different cyt f structures, which are very similar, produced different reaction rates in interactions with PC and cyt c6. We were able to attribute this to structural differences among these molecules, particularly to a small flexible loop between A-184 and G-191 (which has some of the highest crystallographic temperature factors in all of the cyt f structures) on the cyt f small domain. We also showed that deletion of the cyt f small domain affected cyt c6 more than PC, due to their different binding positions on cyt f. One function of the small domain in cyt f may be to guide PC or cyt c6 to a uniform dock with cyt f, especially due to electrostatic interactions with K-188 and K-189 on this domain. Our results could serve as a good guide for future experimental work on these proteins to understand better the electron transfer process between them. Also, these results demonstrated the sensitivity and the power of the Brownian dynamics simulations in the study of molecular interactions.
Collapse
Affiliation(s)
- Esmael J Haddadian
- Biophysics Program and Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
19
|
Lennartz K, Bossmann S, Westhoff P, Bechtold N, Meierhoff K. HCF153, a novel nuclear-encoded factor necessary during a post-translational step in biogenesis of the cytochrome bf complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:101-12. [PMID: 16367957 DOI: 10.1111/j.1365-313x.2005.02605.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We have isolated the nuclear photosynthetic mutant hcf153 which shows reduced accumulation of the cytochrome b(6)f complex. The levels and processing patterns of the RNAs encoding the cytochrome b(6)f subunits are unaltered in the mutant. In vivo protein labeling experiments and analysis of polysome association revealed normal synthesis of the large chloroplast-encoded cytochrome b(6)f subunits. The mutation resulted from a T-DNA insertion and the affected nuclear gene was cloned. HCF153 encodes a 15 kDa protein containing a chloroplast transit peptide. Sequence similarity searches revealed that the protein is restricted to higher plants. A HCF153-Protein A fusion construct introduced into hcf153 mutant plants was able to substitute the function of the wild-type protein. Fractionation of intact chloroplasts from these transgenic plants suggests that most or all of the fusion protein is tightly associated with the thylakoid membrane. Our data show that the identified factor is a novel protein that could be involved in a post-translational step during biogenesis of the cytochrome b(6)f complex. It is also possible that HCF153 is necessary for translation of one of the very small subunits of the cytochrome b(6)f complex.
Collapse
Affiliation(s)
- Katja Lennartz
- Heinrich-Heine-Universität, Institut für Entwicklungs und Molekularbiologie der Pflanzen, Universitätsstrabe 1, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
20
|
Gross EL, Rosenberg I. A Brownian dynamics study of the interaction of Phormidium cytochrome f with various cyanobacterial plastocyanins. Biophys J 2006; 90:366-80. [PMID: 16214856 PMCID: PMC1367034 DOI: 10.1529/biophysj.105.065185] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 09/13/2005] [Indexed: 11/18/2022] Open
Abstract
Brownian dynamics simulations were used to study the role of electrostatic forces in the interactions of cytochrome f from the cyanobacterium Phormidium laminosum with various cyanobacterial plastocyanins. Both the net charge on the plastocyanin molecule and the charge configuration around H92 (H87 in higher plants) are important in determining the interactions. Those plastocyanins (PCs) with a net charge more negative than -2.0, including those from Synechococcus sp. PCC7942, Synechocystis sp. 6803, and P. laminosum showed very little complex formation. On the other hand, complex formation for those with a net charge more positive than -2.0 (including Nostoc sp. PCC7119 and Prochlorothrix hollandica) as well as Nostoc plastocyanin mutants showed a linear dependence of complex formation upon the net charge on the plastocyanin molecule. Mutation of charged residues on the surface of the PC molecules also affected complex formation. Simulations involving plastocyanin mutants K35A, R93A, and K11A (when present) showed inhibition of complex formation. In contrast, D10A and E17A mutants showed an increase in complex formation. All of these residues surround the H92 (H87 in higher plant plastocyanins) ligand to the copper. An examination of the closest electrostatic contacts shows that these residues interact with D63, E123, R157, D188, and the heme on Phormidium cytochrome f. In the complexes formed, the long axis of the PC molecule lies perpendicular to the long axis of cytochrome f. There is considerable heterogeneity in the orientation of plastocyanin in the complexes formed.
Collapse
Affiliation(s)
- Elizabeth L Gross
- Department of Biochemistry, The Ohio State University, Columbus, Ohio, USA.
| | | |
Collapse
|
21
|
Díaz-Moreno I, Díaz-Quintana A, De la Rosa MA, Ubbink M. Structure of the Complex between Plastocyanin and Cytochrome f from the Cyanobacterium Nostoc sp. PCC 7119 as Determined by Paramagnetic NMR. J Biol Chem 2005; 280:18908-15. [PMID: 15705583 DOI: 10.1074/jbc.m413298200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complex between cytochrome f and plastocyanin from the cyanobacterium Nostoc has been characterized by NMR spectroscopy. The binding constant is 16 mM(-1), and the lifetime of the complex is much less than 10 ms. Intermolecular pseudo-contact shifts observed for the plastocyanin amide nuclei, caused by the heme iron, as well as the chemical-shift perturbation data were used as the sole experimental restraints to determine the orientation of plastocyanin relative to cytochrome f with a precision of 1.3 angstroms. The data show that the hydrophobic patch surrounding tyrosine 1 in cytochrome f docks the hydrophobic patch of plastocyanin. Charge complementarities are found between the rims of the respective recognition sites of cytochrome f and plastocyanin. Significant differences in the relative orientation of both proteins are found between this complex and those previously reported for plants and Phormidium, indicating that electrostatic and hydrophobic interactions are balanced differently in these complexes.
Collapse
Affiliation(s)
- Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | | | | | | |
Collapse
|
22
|
Gross EL. A Brownian dynamics study of the interaction of Phormidium laminosum plastocyanin with Phormidium laminosum cytochrome f. Biophys J 2004; 87:2043-59. [PMID: 15345580 PMCID: PMC1304607 DOI: 10.1529/biophysj.103.038497] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 05/21/2004] [Indexed: 11/18/2022] Open
Abstract
The interaction of Phormidium laminosum plastocyanin (PC) with P. laminosum cytochrome f (cyt f) was studied using Brownian dynamics (BD) simulations. Few complexes and a low rate of electron transfer were observed for wild-type PC. Increasing the positive electrostatic field on PC by the addition of a Zn(2+) ion in the neighborhood of D44 and D45 on PC (as found in crystal structure of plastocyanin) increased the number of complexes formed and the calculated rates of electron transfer as did PC mutations D44A, D45A, E54A, and E57A. Mutations of charged residues on Phormidium PC and Phormidium cyt f were used to map binding sites on both proteins. In both the presence and absence of the Zn(2+) ion, the following residues on PC interact with cyt f: D44, D45, K6, D79, R93, and K100 that lie in a patch just below H92 and Y88 and D10, E17, and E70 located on the upper portion of the PC molecule. In the absence of the Zn(2+) ion, K6 and K35 on the top of the PC molecule also interact with cyt f. Cyt f residues involved in binding PC, in the absence of the Zn(2+) ion, include E165, D187, and D188 that are located on the small domain of cyt f. The orientation of PC in the complexes was quite random in accordance with NMR results. In the presence of the Zn(2+) ion, K53 and E54 in the lower patch of the PC molecule also interact with cyt f and PC interacts with E86, E95, and E123 on the large domain of cyt f. Also, the orientation of PC in the complexes was much more uniform than in the absence of the Zn(2+) ion. The difference may be due to both the larger electrostatic field and the greater asymmetry of the charge distribution on PC observed in the presence of the Zn(2+) ion. Hydrophobic interactions were also observed suggesting a model of cyt f-PC interactions in which electrostatic forces bring the two molecules together but hydrophobic interactions participate in stabilizing the final electron-transfer-active dock.
Collapse
Affiliation(s)
- Elizabeth L Gross
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 34210, USA.
| |
Collapse
|
23
|
Gross EL, Pearson DC. Brownian dynamics simulations of the interaction of Chlamydomonas cytochrome f with plastocyanin and cytochrome c6. Biophys J 2003; 85:2055-68. [PMID: 12944318 PMCID: PMC1303377 DOI: 10.1016/s0006-3495(03)74633-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2002] [Accepted: 05/05/2003] [Indexed: 11/30/2022] Open
Abstract
The interaction of Chlamydomonas cytochrome f (cyt f) with either Chlamydomonas plastocyanin (PC) or Chlamydomonas cytochrome c(6) (cyt c(6)) was studied using Brownian dynamics simulations. The two electron acceptors (PC and cyt c(6)) were found to be essentially interchangeable despite a lack of sequence homology and different secondary structures (beta-sheet for PC and alpha-helix for cyt c(6)). Simulations using PC and cyt c(6) interacting with cyt f showed approximately equal numbers of successful complexes and calculated rates of electron transfer. Cyt f-PC and cyt f-cyt c(6) showed the same types of interactions. Hydrophobic residues surrounding the Y1 ligand to the heme on cyt f interacted with hydrophobic residues on PC (surrounding the H87 ligand to the Cu) or cyt c(6) (surrounding the heme). Both types of complexes were stabilized by electrostatic interactions between K65, K188, and K189 on cyt f and conserved anionic residues on PC (E43, D44, D53, and E85) or cyt c(6) (E2, E70, and E71). Mutations on cyt f had identical effects on its interaction with either PC or cyt c(6). K65A, K188A, and K189A showed the largest effects whereas residues such as K217A, R88A, and K110A, which are located far from the positive patch on cyt f, showed very little inhibition. The effect of mutations observed in Brownian dynamics simulations paralleled those observed in experiments.
Collapse
Affiliation(s)
- Elizabeth L Gross
- Department of Biochemistry and Biophysics Program, The Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
24
|
Sabahi A, Wittung-Stafshede P. Unfolding the unique c-type heme protein, Chlamydomonas reinhardtii cytochrome f. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1596:163-71. [PMID: 11983431 DOI: 10.1016/s0167-4838(02)00214-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have studied the unfolding reaction of cytochrome f from the green alga Chlamydomonas reinhardtii. Cytochrome f is different from all other c-type heme proteins in that it is a large, two-domain protein with predominantly beta-sheet structure. Moreover, the sixth axial ligand to the heme-iron is unique in cytochrome f: it is provided by the N-terminal alpha-amino group. Unfolding of oxidized and reduced cytochrome f by guanidine hydrochloride (GuHCl) was monitored by far-UV circular dichroism (CD), Soret absorption, and tyrosine emission: the same unfolding curves were obtained regardless of method. Neither oxidized nor reduced unfolded cytochrome f can be refolded at neutral pH. At pH 3.5 refolding takes place (upon dilution to lower denaturant concentrations or by electron injection to the unfolded, oxidized form), although the reaction is extremely slow. Reduced cytochrome f appears much more resistant towards denaturant perturbation than the oxidized form (in pH range 7-3.5). The heme in unfolded cytochrome f remains low-spin to pH 4 but turns high-spin at pH 3.5 (presumably due to protonation of the N-terminal amino group). Our results suggest that the unfolding process for cytochrome f is complex, involving kinetically trapped intermediates not resolvable by spectroscopy.
Collapse
Affiliation(s)
- Ali Sabahi
- Chemistry Department, Tulane University, 6832 St. Charles Avenue, New Orleans, LA 70118-5698, USA
| | | |
Collapse
|
25
|
Fernández-Velasco JG, Jamshidi A, Gong XS, Zhou J, Ueng RY. Photosynthetic electron transfer through the cytochrome b6f complex can bypass cytochrome f. J Biol Chem 2001; 276:30598-607. [PMID: 11395492 DOI: 10.1074/jbc.m102241200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytochrome b(6)f complex is an obligatory electron transfer and proton-translocating enzyme in all oxygenic photosynthesis. Its operation has been described by the "Q-cycle." This model proposes that electrons are transferred from plastoquinol to plastocyanin (the reductant of P700 in Photosystem I) through, obligatorily in series, the iron-sulfur and the cytochrome f redox centers in the cytochrome b(6)f complex. However, here we demonstrate that (a) the iron-sulfur center-dependent reductions of plastocyanin and P700 are much faster than cytochrome f reduction, both in Chlamydomonas reinhardtii cytochrome f mutants and in the wild type, and (b) the steady-state photosynthetic electron transport does not correlate with strongly inhibited cytochrome f reduction kinetics in the mutants. Thus, cytochrome f is not an obligatory intermediate for electrons flowing through the cytochrome b(6)f complex. The oxidation equivalents from Photosystem I are delivered to the high potential chain of the cytochrome b(6)f complex both at the cytochrome f level and, independently, at another site connected to the quinol-oxidizing site, possibly the iron-sulfur center.
Collapse
Affiliation(s)
- J G Fernández-Velasco
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
26
|
Gong XS, Chung S, Fernández-Velasco JG. Electron transfer and stability of the cytochrome b6f complex in a small domain deletion mutant of cytochrome f. J Biol Chem 2001; 276:24365-71. [PMID: 11320082 DOI: 10.1074/jbc.m010721200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lumen segment of cytochrome f consists of a small and a large domain. The role of the small domain in the biogenesis and stability of the cytochrome b(6)f complex and electron transfer through the cytochrome b(6)f complex was studied with a small domain deletion mutant in Chlamydomonas reinhardtii. The mutant is able to grow photoautotrophically but with a slower rate than the wild type strain. The heme group is covalently attached to the polypeptide, and the visible absorption spectrum of the mutant protein is identical to that of the native protein. The kinetics of electron transfer in the mutant were measured by flash kinetic spectroscopy. Our results show that the rate for the oxidation of cytochrome f was unchanged (t(12) = approximately 100 micros), but the half-time for the reduction of cytochrome f is increased (t(12) = 32 ms; for wild type, t(12) = 2.1 ms). Cytochrome b(6) reduction was slower than that of the wild type by a factor of approximately 2 (t(12) = 8.6 ms; for wild type, t(12) = 4.7 ms); the slow phase of the electrochromic band shift also displayed a slower kinetics (t(12) = 5.5 ms; for wild type, t(12) = 2.7 ms). The stability of the cytochrome b(6)f complex in the mutant was examined by following the kinetics of the degradation of the individual subunits after inhibiting protein synthesis in the chloroplast. The results indicate that the cytochrome b(6)f complex in the small domain deletion mutant is less stable than in the wild type. We conclude that the small domain is not essential for the biogenesis of cytochrome f and the cytochrome b(6)f complex. However, it does have a role in electron transfer through the cytochrome b(6)f complex and contributes to the stability of the complex.
Collapse
Affiliation(s)
- X S Gong
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
27
|
Mould RM, Kapazoglou A, Gray JC. Assembly of cytochrome f into the cytochrome bf complex in isolated pea chloroplasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:792-9. [PMID: 11168420 DOI: 10.1046/j.1432-1327.2001.01938.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Structural features of cytochrome f necessary for assembly into the cytochrome bf complex were examined in isolated pea chloroplasts following import of (35)S-labelled chimeric precursor proteins, consisting of the presequence of the small subunit of Rubisco fused to the turnip cytochrome f precursor. Assembly was detected by nondenaturing gel electrophoresis of dodecyl maltoside-solubilized thylakoid membranes. A cytochrome f polypeptide unable to bind haem because of mutagenesis of Cys21 and Cys24 to alanine residues was assembled into the complex and had similar stability to the wild-type polypeptide. This indicates that covalent haem binding to cytochrome f is not necessary for assembly of the protein into the cytochrome bf complex. A truncated protein lacking the C-terminal 33 amino acid residues, including the transmembrane span and the stroma-exposed region, was translocated across the thylakoid membrane, had a similar stability to wild-type cytochrome f but was not assembled into the complex. This indicates that the C-terminal region of cytochrome f is important for assembly into the complex. A mutant cytochrome f unable to bind haem and lacking the C-terminal region was also translocated across the thylakoid membrane but was extremely labile, indicating that, in the absence of the C-terminal membrane anchor, haem-less cytochrome f is recognized by a thylakoid proteolytic system.
Collapse
Affiliation(s)
- R M Mould
- Department of Plant Sciences, University of Cambridge, UK.
| | | | | |
Collapse
|
28
|
Smith MD, Licatalosi DD, Thompson JE. Co-association of cytochrome f catabolites and plastid-lipid-associated protein with chloroplast lipid particles. PLANT PHYSIOLOGY 2000; 124:211-21. [PMID: 10982436 PMCID: PMC59136 DOI: 10.1104/pp.124.1.211] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2000] [Accepted: 05/31/2000] [Indexed: 05/20/2023]
Abstract
Distinguishable populations of lipid particles isolated from chloroplasts of yellow wax bean (Phaseolus vulgaris L. cv Kinghorn Wax) leaves have been found to contain plastid-lipid-associated protein (J. Pozueta-Romero, F. Rafia, G. Houlné, C. Cheniclet, J.P. Carde, M.-L. Schantz, R. Schantz [1997] Plant Physiol 115: 1185-1194). One population is comprised of plastoglobuli obtained from sonicated chloroplasts by flotation centrifugation. Higher density lipid-protein particles isolated from chloroplast stroma by ultrafiltration constitute a second population. Inasmuch as the stromal lipid-protein particles contain plastid-lipid-associated protein, but are distinguishable from plastoglobuli in terms of their lipid and protein composition, they appear to be plastoglobuli-like particles. Of particular interest is the finding that plastoglobuli and the higher density lipid-protein particles both contain catabolites of the thylakoid protein, cytochrome f. These observations support the view that there are distinguishable populations of plastoglobuli-like particles in chloroplasts. They further suggest that the formation of these particles may allow removal of protein catabolites from the thylakoid membrane that are destined for degradation as part of normal thylakoid turnover.
Collapse
Affiliation(s)
- M D Smith
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
29
|
Gong XS, Wen JQ, Fisher NE, Young S, Howe CJ, Bendall DS, Gray JC. The role of individual lysine residues in the basic patch on turnip cytochrome f for electrostatic interactions with plastocyanin in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3461-8. [PMID: 10848961 DOI: 10.1046/j.1432-1327.2000.01366.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of electrostatic interactions in determining the rate of electron transfer between cytochrome f and plastocyanin has been examined in vitro with mutants of turnip cytochrome f and mutants of pea and spinach plastocyanins. Mutation of lysine residues Lys58, Lys65 and Lys187 of cytochrome f to neutral or acidic residues resulted in decreased binding constants and decreased rates of electron transfer to wild-type pea plastocyanin. Interaction of the cytochrome f mutant K187E with the pea plastocyanin mutant D51K gave a further decrease in electron transfer rate, indicating that a complementary charge pair at these positions could not compensate for the decreased overall charge on the proteins. Similar results were obtained with the interaction of the cytochrome f mutant K187E with single, double and triple mutants of residues in the acidic patches of spinach plastocyanin. These results suggest that the lysine residues of the basic patch on cytochrome f are predominantly involved in long-range electrostatic interactions with plastocyanin. However, analysis of the data using thermodynamic cycles provided evidence for the interaction of Lys187 of cytochrome f with Asp51, Asp42 and Glu43 of plastocyanin in the complex, in agreement with a structural model of a cytochrome f-plastocyanin complex determined by NMR.
Collapse
Affiliation(s)
- X S Gong
- Cambridge Centre for Molecular Recognition and Department of Plant Sciences, University of Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Gong XS, Wen JQ, Gray JC. The role of amino-acid residues in the hydrophobic patch surrounding the haem group of cytochrome f in the interaction with plastocyanin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1732-42. [PMID: 10712605 DOI: 10.1046/j.1432-1327.2000.01168.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Soluble turnip cytochrome f has been purified from the periplasmic fraction of Escherichia coli expressing a truncated petA gene encoding the precursor protein lacking the C-terminal 33 amino-acid residues. The protein is identical [as judged by 1H-NMR spectroscopy, midpoint redox potential (+ 365 mV) and electron transfer reactions with plastocyanin] to cytochrome f purified from turnip leaves. Several residues in the hydrophobic patch surrounding the haem group have been changed by site-directed mutagenesis, and the proteins purified from E. coli. The Y1F and Q7N mutants showed only minor changes in the plastocyanin-binding constant Ka and the second-order rate constant for electron transfer to plastocyanin, whereas the Y160S mutant showed a 30% decrease in the overall rate of electron transfer caused in part by a 60% decrease in binding constant and partially compensated by an increased driving force due to a 27-mV decrease in redox potential. In contrast, the F4Y mutant showed increased rates of electron transfer which may be ascribed to an increased binding constant and a 14-mV decrease in midpoint redox potential. This indicates that subtle changes in the hydrophobic patch can influence rates of electron transfer to plastocyanin by changing the binding constants and altering the midpoint redox potential of the cytochrome haem group.
Collapse
Affiliation(s)
- X S Gong
- Department of Plant Sciences and Cambridge Centre for Molecular Recognition, University of Cambridge, UK
| | | | | |
Collapse
|
31
|
The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:21-85. [PMID: 10216153 DOI: 10.1016/s0005-2728(99)00043-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Bernd KK, Kohorn BD. Tip loci: six Chlamydomonas nuclear suppressors that permit the translocation of proteins with mutant thylakoid signal sequences. Genetics 1998; 149:1293-301. [PMID: 9649521 PMCID: PMC1460232 DOI: 10.1093/genetics/149.3.1293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations within the signal sequence of cytochrome f (cytf) in Chlamydomonas inhibit thylakoid membrane protein translocation and render cells nonphotosynthetic. Twenty-seven suppressors of the mutant signal sequences were selected for their ability to restore photoautotrophic growth and these describe six nuclear loci named tip1 through 6 for thylakoid insertion protein. The tip mutations restore the translocation of cytf and are not allele specific, as they suppress a number of different cytf signal sequence mutations. Tip5 and 2 may act early in cytf translocation, while Tip1, 3, 4, and 6 are engaged later. The tip mutations have no phenotype in the absence of a signal sequence mutation and there is genetic interaction between tip4, and tip5 suggesting an interaction of their encoded proteins. As there is overlap in the energetic, biochemical and genetic requirements for the translocation of nuclear and chloroplast-encoded thylakoid proteins, the tip mutations likely identify components of a general thylakoid protein translocation apparatus.
Collapse
Affiliation(s)
- K K Bernd
- Developmental, Cell and Molecular Biology Group, Department of Botany, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
33
|
Kerfeld CA, Krogmann DW. PHOTOSYNTHETIC CYTOCHROMES c IN CYANOBACTERIA, ALGAE, AND PLANTS. ACTA ACUST UNITED AC 1998; 49:397-425. [PMID: 15012240 DOI: 10.1146/annurev.arplant.49.1.397] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cytochromes that function in photosynthesis in cyanobacteria, algae, and higher plants have, like the other photosynthetic catalysts, been largely conserved in their structure and function during evolution. Cyanobacteria and algae contain cytochrome c6, which is not found in higher plants and which may enhance survival in their planktonic mode of life. Cyanobacteria and algae contain another cytochrome, low-potential c549, which is not found in higher plants. This cytochrome has a structural role in PSII and may contribute to anaerobic survival. There is a third unique cytochrome, cytochrome M, in the planktonic photosynthesizers, and its function is unknown. New evidence is appearing to indicate evolution of cytochrome interaction mechanisms during the evolution of photosynthesis. The ease of cytochrome gene manipulation in cyanobacteria and in Chlamydomonas reinhardtii now provides great advantages in understanding of photosynthesis. The solution of tertiary and quaternary structures of cytochromes and cytochrome complexes will provide structural and functional detail at atomic resolution.
Collapse
Affiliation(s)
- Cheryl A. Kerfeld
- 219 Molecular Biology Institute, University of California at Los Angeles, Box 951570, Los Angeles, California 90095-1570; e-mail: , Biochemistry Department, Purdue University, West Lafayette, Indiana 47907-1153; e-mail:
| | | |
Collapse
|
34
|
Ubbink M, Ejdebäck M, Karlsson BG, Bendall DS. The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure 1998; 6:323-35. [PMID: 9551554 DOI: 10.1016/s0969-2126(98)00035-5] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The reduction of plastocyanin by cytochrome f is part of the chain of photosynthetic electron transfer reactions that links photosystems II and I. The reaction is rapid and is influenced by charged residues on both proteins. Previously determined structures show that the plastocyanin copper and cytochrome f haem redox centres are some distance apart from the relevant charged sidechains, and until now it was unclear how a transient electrostatic complex can be formed that brings the redox centres sufficiently close for a rapid reaction. RESULTS A new approach was used to determine the structure of the transient complex between cytochrome f and plastocyanin. Diamagnetic chemical shift changes and intermolecular pseudocontact shifts in the NMR spectrum of plastocyanin were used as input in restrained rigid-body molecular dynamics calculations. An ensemble of ten structures was obtained, in which the root mean square deviation of the plastocyanin position relative to cytochrome f is 1.0 A. Electrostatic interaction is maintained at the same time as the hydrophobic side of plastocyanin makes close contact with the haem area, thus providing a short electron transfer pathway (Fe-Cu distance 10.9 A) via residues Tyr1 or Phe4 (cytochrome f) and the copper ligand His87 (plastocyanin). CONCLUSIONS The combined use of diamagnetic and paramagnetic chemical shift changes makes it possible to obtain detailed information about the structure of a transient complex of redox proteins. The structure suggests that the electrostatic interactions 'guide' the partners into a position that is optimal for electron transfer, and which may be stabilised by short-range interactions.
Collapse
Affiliation(s)
- M Ubbink
- Department of Biochemistry, University of Cambridge, England.
| | | | | | | |
Collapse
|
35
|
High S, Henry R, Mould RM, Valent Q, Meacock S, Cline K, Gray JC, Luirink J. Chloroplast SRP54 interacts with a specific subset of thylakoid precursor proteins. J Biol Chem 1997; 272:11622-8. [PMID: 9111079 DOI: 10.1074/jbc.272.17.11622] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Signal recognition particles (SRPs) have been identified in organisms as diverse as mycoplasma and mammals; in several cases these SRPs have been shown to play a key role in protein targeting. In each case the recognition of appropriate targeting signals is mediated by SRP subunits related to the 54-kDa protein of mammalian SRP (SRP54). In this study we have characterized the specificity of 54CP, a chloroplast homologue of SRP54 which is located in the chloroplast stroma. We have used a nascent chain cross-linking approach to detect the interactions of 54CP with heterologous endoplasmic reticulum-targeting signals. 54CP functions as a bona fide signal recognition factor which can discriminate between functional and non-functional targeting signals. Using a range of authentic thylakoid precursor proteins we found that 54CP discriminates between thylakoid-targeting signals, interacting with only a subset of protein precursors. Thus, the light-harvesting chlorophyll a/b-binding protein, cytochrome f, and the Rieske FeS protein all showed strong cross-linking products with 54CP. In contrast, no cross-linking to the 23- and 33-kDa proteins of the oxygen-evolving complex were detected. The selectivity of 54CP correlates with the hydrophobicity of the thylakoid-targeting signal and, in the case of light-harvesting chlorophyll a/b-binding protein, with previously determined transport/integration requirements. We propose that 54CP mediates the targeting of a specific subset of precursors to the thylakoid membrane, i.e. those with particularly hydrophobic signal sequences.
Collapse
Affiliation(s)
- S High
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wagner MJ, Packer JC, Howe CJ, Bendall DS. Some characteristics of cytochrome f in the cyanobacterium Phormidium laminosum: its sequence and charge properties in the reaction with plastocyanin. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1276:246-52. [PMID: 8856106 DOI: 10.1016/0005-2728(96)00084-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Part of the petCA operon was cloned and the sequence of the cytochrome f gene from the moderately thermophilic cyanobacterium Phormidium laminosum determined. A partial sequence of the petC gene encoding the Rieske iron-sulphur protein was also obtained. The cytochrome f gene encodes a mature protein of 385 residues and a leader sequence of 45 residues. The mature protein contains several acidic or neutral residues corresponding to basic residues in the turnip protein. Some of the latter are thought to be important for the interaction with plastocyanin via its "eastern' face. Many of the corresponding residues on the eastern face of P. laminosum plastocyanin are either basic or neutral instead of acidic. These comparisons suggested that the local charges on P. laminosum cytochrome f that are important for its interaction with the homologous plastocyanin may be negative rather than positive. The importance of acidic groups was confirmed by measuring the rates of reduction of horse heart cytochrome c and P. laminosum and spinach plastocyanins by the cytochrome bf complex isolated from P. laminosum. P. laminosum plastocyanin gave the highest rates, which decreased at high ionic strength, confirming the importance of positive local charges on this protein. When extrapolated to infinite ionic strength the rates observed with the two kinds of plastocyanin were similar, but cytochrome c became unreactive. An optimum was observed in the ionic strength response with P. laminosum plastocyanin.
Collapse
Affiliation(s)
- M J Wagner
- Department of Biochemistry, University of Cambridge, UK
| | | | | | | |
Collapse
|
37
|
Cramer WA, Soriano GM, Ponomarev M, Huang D, Zhang H, Martinez SE, Smith JL. SOME NEW STRUCTURAL ASPECTS AND OLD CONTROVERSIES CONCERNING THE CYTOCHROME b6f COMPLEX OF OXYGENIC PHOTOSYNTHESIS. ACTA ACUST UNITED AC 1996; 47:477-508. [PMID: 15012298 DOI: 10.1146/annurev.arplant.47.1.477] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cytochrome b6f complex functions in oxygenic photosynthetic membranes as the redox link between the photosynthetic reaction center complexes II and I and also functions in proton translocation. It is an ideal integral membrane protein complex in which to study structure and function because of the existence of a large amount of primary sequence data, purified complex, the emergence of structures, and the ability of flash kinetic spectroscopy to assay function in a readily accessible ms-100 mus time domain. The redox active polypeptides are cytochromes f and b6 (organelle encoded) and the Rieske iron-sulfur protein (nuclear encoded) in a mol wt = 210,000 dimeric complex that is believed to contain 22-24 transmembrane helices. The high resolution structure of the lumen-side domain of cytochrome f shows it to be an elongate (75 A long) mostly beta-strand, two-domain protein, with the N-terminal alpha-amino group as orthogonal heme ligand and an internal linear 11-A bound water chain. An unusual electron transfer event, the oxidant-induced reduction of a significant fraction of the p (lumen)-side cytochrome b heme by plastosemiquinone indicates that the electron transfer pathway in the b6f complex can be described by a version of the Q-cycle mechanism, originally proposed to describe similar processes in the mitochondrial and bacterial bc1 complexes.
Collapse
Affiliation(s)
- W. A. Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 49707-1392
| | | | | | | | | | | | | |
Collapse
|
38
|
Martinez SE, Huang D, Ponomarev M, Cramer WA, Smith JL. The heme redox center of chloroplast cytochrome f is linked to a buried five-water chain. Protein Sci 1996; 5:1081-92. [PMID: 8762139 PMCID: PMC2143431 DOI: 10.1002/pro.5560050610] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The crystal structure of the 252-residue lumen-side domain of reduced cytochrome f, a subunit of the proton-pumping integral cytochrome b6f complex of oxygenic photosynthetic membranes, was determined to a resolution of 1.96 A from crystals cooled to -35 degrees. The model was refined to an R-factor of 15.8% with a 0.013-A RMS deviation of bond lengths from ideality. Compared to the structure of cytochrome f at 20 degrees, the structure at -35 degrees has a small change in relative orientation of the two folding domains and significantly lower isotropic temperature factors for protein atoms. The structure revealed an L-shaped array of five buried water molecules that extend in two directions from the N delta 1 of the heme ligand His 25. The longer branch extends 11 A within the large domain, toward Lys 66 in the prominent basic patch at the top of the large domain, which has been implicated in the interaction with the electron acceptor, plastocyanin. The water sites are highly occupied, and their temperature factors are comparable to those of protein atoms. Virtually all residues that form hydrogen bonds with the water chain are invariant among 13 known cytochrome f sequences. The water chain has many features that optimize it as a proton wire, including insulation from the protein medium. It is suggested that this chain may function as the lumen-side exit port for proton translocation by the cytochrome b6f complex.
Collapse
Affiliation(s)
- S E Martinez
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
39
|
Zhou J, Fernández-Velasco JG, Malkin R. N-terminal mutants of chloroplast cytochrome f. Effect on redox reactions and growth in Chlamydomonas reinhardtII. J Biol Chem 1996; 271:6225-32. [PMID: 8626414 DOI: 10.1074/jbc.271.11.6225] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The N-terminal tyrosine of cytochrome f, which provides the sixth ligand to the heme group, has been changed by site-directed mutagenesis in Chlamydomonas reinhardtii to evaluate the role of this amino acid in assembly and function. The second and third residues, proline and valine, respectively, have also been mutated. Y1P is the only strain that did not grow photoautotrophically. The other strains show cytochrome b6f complex/photosystem I reaction center chlorophyll, photosystem I unit size and chlorophyll a+b/cell ratios comparable with wild-type cells. Rates of cytochrome f photooxidation in all strains were similar (t1/2 approximately = 300 microsec), whereas the rate of re-reduction sensitive to stigmatellin (at Eh = 0 mV, (where Eh is the ambient redox potential) for wild-type, Y1W, Y1F, Y1S, P2V, and V3P had a tl/2 of 3, 4, 5, 9, 40, and 2 ms, respectively. Rates of oxygen evolution by whole cells of P2V, Y1F, and Y1S were 67, 80, and 80% of wild-type rates, respectively. At low light intensity, all competent strains had the same growth rate whereas at saturating intensities, only P2V showed a significant inhibition. These results are considered in relation to structure-function relationships in the cytochrome f molecule.
Collapse
Affiliation(s)
- J Zhou
- Department of Plant Biology, University of California, Berkeley 94720-3102, USA
| | | | | |
Collapse
|
40
|
Kuras R, Büschlen S, Wollman FA. Maturation of pre-apocytochrome f in vivo. A site-directed mutagenesis study in Chlamydomonas reinhardtii. J Biol Chem 1995; 270:27797-803. [PMID: 7499249 DOI: 10.1074/jbc.270.46.27797] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The biosynthesis of cytochrome f is a multistep process which requires processing of the precursor protein and covalent ligation of a c-heme upon membrane insertion of the protein. The crystal structure of a soluble form of cytochrome f has revealed that one axial ligand of the c-heme is provided by the alpha-amino group of Tyr1 generated upon cleavage of the signal sequence from the precursor protein (Martinez S. E., Huang D., Szczepaniak A., Cramer W.A., and Smith J. L. (1994) Structure 2, 95-105). We therefore investigated, by site-directed mutagenesis, the possible interplay between protein processing and heme attachment to cytochrome f in Chlamydomonas reinhardtii. These modifications were performed by chloroplast transformation using a petA gene encoding the full-length precursor protein and also a truncated version lacking the C-terminal membrane anchor. We first substituted the two cysteinyl residues responsible for covalent ligation of the c-heme, by a valine and a leucine, and showed that heme binding is not a prerequisite for cytochrome f processing. In another series of experiments, we replaced the consensus cleavage site for the thylakoid processing peptidase, AQA, by an LQL sequence. The resulting transformants were nonphototrophic and displayed delayed processing of the precursor form of cytochrome f, but nonetheless both the precursor and processed forms showed heme binding and assembled in cytochrome b6f complexes. Thus, pre-apocytochrome f adopts a suitable conformation for the cysteinyl residues to be substrates of the heme lyase and pre-holocytochrome f folds in an assembly-competent conformation. In the last series of experiments, we compared the rates of synthesis and degradation of the various forms of cytochrome f in the four types of transformants under study: (i) the C terminus membrane anchor apparently down-regulates the rate of synthesis of cytochrome f and (ii) degradation of misfolded forms of cytochrome f occurs by a proteolytic system intimately associated with the thylakoid membranes.
Collapse
Affiliation(s)
- R Kuras
- Service de Photosynthèse, URA/CNRS 1187, Institut de Biologie Physico-chimique, Paris, France
| | | | | |
Collapse
|
41
|
Affiliation(s)
- R C Prince
- Exxon Research and Engineering Co., Annandale, NJ 08801, USA
| | | |
Collapse
|
42
|
Hope AB, Hiscock W, Matthews DB, Valente P. Effects of hydrostatic pressure on the kinetics of electron transfer in an isolated system of chloroplast cytochrome bf complex, plastocyanin and P700. PHOTOSYNTHESIS RESEARCH 1995; 43:191-200. [PMID: 24306842 DOI: 10.1007/bf00029932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/1994] [Accepted: 01/19/1995] [Indexed: 06/02/2023]
Abstract
The effects of pressure on the kinetics of redox reactions in and around the chloroplast cytochrome bf complex were studied using a reconstituted system consisting of Photosystem I (PS I) particles, cytochrome bf complex and plastocyanin (PC), all derived from pea chloroplasts. There were no significant permanent effects of pressure in the range 0.1-191 MPa on the reaction kinetics, or on the shape of the absorption spectra of components studied. Discernable effects on rate-coefficients of increasing pressure were observed on the reduction of P700(+) by PC(I), on the reduction of PC(II) by ascorbate, and on the oxidation of decyl plastoquinol by the bf complex. The volumes of activation ΔV(#) were determined from the dependence of the rate-coefficient on pressure using: [Formula: see text] The volume of activation is the difference in partial molar volume between the activated state and the reactants for the redox reaction. Such data was sought to help define in detail those redox reactions and the corresponding activated states. For the reduction of P700(+) by PC(I) and the oxidation of decyl plastoquinol by the bf complex, the rate coefficient decreased with increase in pressure, whilst for the reduction of PC(II) by ascorbate it increased. The corresponding volumes of activation were 9.6±0.6×10(-6) m(3) mol(-1), 18±2×10(-6) m(3) mol(-1) and -14±1×10(-6) m(3) mol(-1), respectively. Much of the pressure-dependence of PC(II) reduction by ascorbate was ascribed to an increase in ascorbate ionisation with increase in pressure. There was little effect of pressure on the kinetics of oxidation of ferrocytochrome f by PC(II), or on the equilibrium constant of the redox pair ferrocytochrome f/ferricytochrome f: PC(II)/PC(I). Possible physical bases for these activation volumes are discussed, and they are compared with literature values.
Collapse
Affiliation(s)
- A B Hope
- School of Biological Sciences, Flinders University, GPO Box 2100, 5001, Adelaide, S.A., Australia
| | | | | | | |
Collapse
|
43
|
Howe G, Mets L, Merchant S. Biosynthesis of cytochrome f in Chlamydomonas reinhardtii: analysis of the pathway in gabaculine-treated cells and in the heme attachment mutant B6. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:156-65. [PMID: 7862086 DOI: 10.1007/bf00294678] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chlamydomonas reinhardtii uses two c-type cytochromes for photosynthetic electron transfer: the thylakoid membrane-bound cytochrome f of the cytochrome b6f complex and the soluble cytochrome c6. Previously, a class of photosynthesis-minus, acetate-requiring mutants was identified which were deficient in both c-type cytochromes, and biochemical analyses of cytochrome c6 biosynthesis in these strains indicated that they were each blocked at the step of heme attachment to apocytochrome c6. In order to demonstrate that the deficiency in cytochrome f results from the same biochemical and genetic defect, cytochrome f biosynthesis was examined in the B6 mutant (a representative of this phenotypic class) and in spontaneous suppressor strains derived from B6. Pulse-radiolabeling experiments show that B6 synthesizes a form of cytochrome f that is rapidly degraded in vivo. This polypeptide is membrane associated and migrates with an electrophoretic mobility identical to that of standard apocytochrome f produced in vitro but slightly greater than that of standard holocytochrome f produced in vivo by wild-type cells. These findings suggest that the B6 strain is unable to convert apocytochrome f to holocytochrome f and that apocytochrome f is unstable in vivo. In the suppressed strains, accumulation of both holocytochrome f and holocytochrome c6 is restored. One suppressor mutation (strain B6R) displays uniparental inheritance whereas another (B6T3) displays Mendelian inheritance. In both cases, the three phenotypes, photosynthesis-plus, b6f+ and cyt c6+ co-segregate in genetic crosses. This study therefore confirms that the dual cyt b6f-/cytc6- deficiency in B6 results from a single mutation that affects a step in holocytochrome formation that is common to the biosynthetic pathways of both plastidic c-type cytochromes. The study also confirms that pre-apocytochrome f synthesis, processing and association with the membrane is not dependent on heme attachment. Synthesis of cytochrome f does, however, appear to be dependent on heme availability. In cells depleted of tetrapyrrole pathway intermediates by gabaculine treatment, cytochrome f synthesis was significantly reduced. Since gabaculine treatment did not affect the stability of cytochrome f nor the accumulation of cytochrome f-encoding transcripts, the reduction is attributed to post-transcriptional regulation of preapocytochrome f synthesis via a pathway that is sensitive to the availability of heme or a tetrapyrrole pathway intermediate.
Collapse
Affiliation(s)
- G Howe
- Department of Chemistry and Biochemistry, UCLA 90024-1569
| | | | | |
Collapse
|
44
|
Ubbink M, Campos AP, Teixeira M, Hunt NI, Hill HA, Canters GW. Characterization of mutant Met100Lys of cytochrome c-550 from Thiobacillus versutus with lysine-histidine heme ligation. Biochemistry 1994; 33:10051-9. [PMID: 8060974 DOI: 10.1021/bi00199a032] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The heme iron in cytochrome c-550 from Thiobacillus versutus has a methionine and a histidine as axial ligands. In order to study the characteristics of a possible lysine-histidine ligation in a heme protein, the methionine has been replaced by a lysine. This residue acts as a ligand between pH 3 and 12. The midpoint potential of the mutant has shifted -329 mV compared to wild type, but apart from this shift the pH dependence of the midpoint potential is unchanged, suggesting that the large drop is caused by specific ligand effects and not by protein refolding. While the EPR spectrum of wild-type cytochrome c-550 shows one species with gz = 3.35, in the spectrum of the mutant two species occur with gz values of 3.53 and 3.30. The intensity ratio of both species depends on the presence of organic cosolvents. In the low frequency region (-4 to -1 ppm) of the 1H NMR spectrum of mutant ferrocytochrome c-550, four one-proton peaks replace the resonances of the ligand methionine side chain protons. Using two-dimensional NMR spectroscopy (COSY and NOESY), these protons and five others have been assigned to the lysine ligand. The spectroscopic results obtained for this mutant show similarities with those observed for the alkaline form of cytochrome c, supporting the Lys-His ligation proposed for this protein. The data are consistent with the evidence for amine ligation in cytochrome f: the EPR spectrum of M100K cytc-550 is similar to that of cytochrome f. However, the NMR spectra show significant differences.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Ubbink
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | | | | | | | | |
Collapse
|
45
|
Gray JC, Rochford RJ, Packman LC. Proteolytic removal of the C-terminal transmembrane region of cytochrome f during extraction from turnip and charlock leaves generates a water-soluble monomeric form of the protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:481-8. [PMID: 8055917 DOI: 10.1111/j.1432-1033.1994.tb19016.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Water-soluble, monomeric cytochrome f purified from leaves of turnip (Brassica rapa) and charlock (Sinapis arvensis) is approximately 3 kDa smaller than the protein in chloroplast thylakoid membranes determined by SDS/PAGE. Sequencing the N-terminal and C-terminal regions of the monomeric protein, by automated Edman degradation and carboxypeptidase P digestion, suggested the loss of 33 amino acid residues at the C-terminus by comparison to sequences of cytochrome f from other higher plants. This was confirmed by the isolation and nucleotide sequencing of the turnip petA gene and by determination of the molecular mass of the monomeric turnip protein by electrospray mass spectrometry. The turnip petA gene encodes a protein of 320 amino acid residues consisting of a presequence of 35 amino acid residues and a mature protein of 285 amino acid residues. The molecular mass of the monomeric turnip protein was 28,160.2 +/- 5.4 Da, indicating cleavage after Gln252 of the mature protein. Electrospray mass spectrometry of the monomeric charlock protein indicated the presence of two main forms with molecular masses of 28,135.1 +/- 5.5 Da and 27,750.7 +/- 4.3 Da corresponding to cleavage after Gln252 and Leu249, respectively. Cleavage in this region of the cytochrome f polypeptide during extraction with butanone removes the single transmembrane span of the protein and liberates the water-soluble globular domain of cytochrome f.
Collapse
Affiliation(s)
- J C Gray
- Cambridge Centre for Molecular Recognition, University of Cambridge, England
| | | | | |
Collapse
|
46
|
Howe G, Merchant S. The biosynthesis of bacterial and plastidic c-type cytochromes. PHOTOSYNTHESIS RESEARCH 1994; 40:147-165. [PMID: 24311284 DOI: 10.1007/bf00019332] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/1993] [Accepted: 12/12/1993] [Indexed: 06/02/2023]
Abstract
The biosynthesis of bacterial and plastidic c-type cytochromes includes several steps that occur post-translationally. In the case of bacterial cytochromes, the cytosolically synthesized pre-proteins are translocated across the cytoplasmic membrane, the pre-proteins are cleaved to their mature forms and heme is ligated to the processed apoprotein. Although heme attachment has not been studied extensively at the biochemical level, molecular genetic approaches suggest that the reaction generally occurs after translocation of the apoprotein to the periplasm. Recent studies with Bradyrhizobium japonicum and Rhodobacter capsulatus indicate that the process of heme attachment requires the function of a large number of genes. Mutation of these genes generates a pleiotropic deficiency in all c-type cytochromes, suggesting that the gene products participate in processes required for the biosynthesis of all c-type cytochromes. In eukaryotic cells, the biosynthesis of photosynthetic c-type cytochromes is somewhat more complex owing to the additional level of compartmentation. Nevertheless, the basic features of the pathway appear to be conserved. For instance, as is the case in bacteria, translocation and processing of the pre-proteins is not dependent on heme attachment. Genetic analysis suggests that the nuclear as well as the plastid genomes encode functions required for heme attachment, and that these genes function in the biosynthesis of the membrane-associated as well as the soluble c-type cytochrome of chloroplasts. A feature of cytochromes c biogenesis that appears to be conserved between chloroplasts and mitochondria is the sub-cellular location of the heme attachment reaction (p-side of the energy transducing membrane). Continued investigation of all three experimental systems (bacteria, chloroplasts, mitochondria) is likely to lead to a greater understanding of the biochemistry of cytochrome maturation as well as the more general problem of cofactor-protein association during the assembly of an energy transducing membrane.
Collapse
Affiliation(s)
- G Howe
- Department of Chemistry and Biochemistry, UCLA, 405 Hilgard Avenue, 90024-1569, Los Angeles, CA, USA
| | | |
Collapse
|
47
|
Martinez SE, Huang D, Szczepaniak A, Cramer WA, Smith JL. Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. Structure 1994; 2:95-105. [PMID: 8081747 DOI: 10.1016/s0969-2126(00)00012-5] [Citation(s) in RCA: 286] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cytochrome f is the high potential electron acceptor of the chloroplast cytochrome b6f complex, and is the electron donor to plastocyanin. The 285-residue cytochrome f subunit is anchored in the thylakoid membrane of the chloroplast by a single membrane-spanning segment near the carboxyl terminus. A soluble redox-active 252-residue lumen-side polypeptide with native spectroscopic and redox properties, missing the membrane anchor and carboxyl terminus, was purified from turnip chloroplasts for structural studies. RESULTS The crystal structure of cytochrome f, determined to 2.3 A resolution, has several unexpected features. The 252-residue polypeptide is organized into one large and one small domain. The larger heme-binding domain is strikingly different from known structures of other c-type cytochromes and has the same fold as the type III domain of the animal protein, fibronectin. Cytochrome f binds heme with an unprecedented axial heme iron ligand: the amino terminus of the polypeptide. CONCLUSION The first atomic structure of a subunit of either the cytochrome b6f complex or of the related cytochrome bc1 complex has been obtained. The structure of cytochrome f allows prediction of the approximate docking site of plastocyanin and should allow systematic studies of the mechanism of intra- and inter-protein electron transfer between the cytochrome heme and plastocyanin copper, which are approximately isopotential. The unprecedented axial heme iron ligand also provides information on the sequence of events (i.e. cleavage of signal peptide and ligation of heme) associated with translocation of the cytochrome across the membrane and its subsequent folding.
Collapse
Affiliation(s)
- S E Martinez
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Cramer WA, Martinez SE, Huang D, Tae GS, Everly RM, Heymann JB, Cheng RH, Baker TS, Smith JL. Structural aspects of the cytochrome b6f complex; structure of the lumen-side domain of cytochrome f. J Bioenerg Biomembr 1994; 26:31-47. [PMID: 8027021 PMCID: PMC4167668 DOI: 10.1007/bf00763218] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The following findings concerning the structure of the cytochrome b6f complex and its component polypeptides, cyt b6, subunit IV and cytochrome f subunit are discussed: (1) Comparison of the amino acid sequences of 13 and 16 cytochrome b6 and subunit IV polypeptides, respectively, led to (a) reconsideration of the helix lengths and probable interface regions, (b) identification of two likely surface-seeking helices in cyt b6 and one in SU IV, and (c) documentation of a high degree of sequence invariance compared to the mitochondrial cytochrome. The extent of identity is particularly high (88% for conserved and pseudoconserved residues) in the segments of cyt b6 predicted to be extrinsic on the n-side of the membrane. (2) The intramembrane attractive forces between trans-membrane helices that normally stabilize the packing of integral membrane proteins are relatively weak. (3) The complex isolated in dimeric form has been visualized, along with isolated monomer, by electron microscopy. The isolated dimer is much more active than the monomer, is the major form of the complex isolated and purified from chloroplasts, and is inferred to be a functional form in the membrane. (4) The isolated cyt b6f complex contains one molecule of chlorophyll a. (5) The structure of the 252 residue lumen-side domain of cytochrome f isolated from turnip chloroplasts has been solved by X-ray diffraction analysis to a resolution of 2.3 A.
Collapse
Affiliation(s)
- W A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|