Svensson B. Protein engineering in the alpha-amylase family: catalytic mechanism, substrate specificity, and stability.
PLANT MOLECULAR BIOLOGY 1994;
25:141-57. [PMID:
8018865 DOI:
10.1007/bf00023233]
[Citation(s) in RCA: 306] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most starch hydrolases and related enzymes belong to the alpha-amylase family which contains a characteristic catalytic (beta/alpha)8-barrel domain. Currently known primary structures that have sequence similarities represent 18 different specificities, including starch branching enzyme. Crystal structures have been reported in three of these enzyme classes: the alpha-amylases, the cyclodextrin glucanotransferases, and the oligo-1,6-glucosidases. Throughout the alpha-amylase family, only eight amino acid residues are invariant, seven at the active site and a glycine in a short turn. However, comparison of three-dimensional models with a multiple sequence alignment suggests that the diversity in specificity arises by variation in substrate binding at the beta-->alpha loops. Designed mutations thus have enhanced transferase activity and altered the oligosaccharide product patterns of alpha-amylases, changed the distribution of alpha-, beta- and gamma-cyclodextrin production by cyclodextrin glucanotransferases, and shifted the relative alpha-1,4:alpha-1,6 dual-bond specificity of neopullulanase. Barley alpha-amylase isozyme hybrids and Bacillus alpha-amylases demonstrate the impact of a small domain B protruding from the (beta/alpha)8-scaffold on the function and stability. Prospects for rational engineering in this family include important members of plant origin, such as alpha-amylase, starch branching and debranching enzymes, and amylomaltase.
Collapse