1
|
Jones CM, Innes S, Holland S, Burch T, Parrish S, Nielsen DR. In Situ, High-Resolution Quantification of CO 2 Uptake Rates via Automated Off-Gas Analysis Illuminates Carbon Uptake Dynamics in Cyanobacterial Cultures. Biotechnol Bioeng 2025; 122:594-605. [PMID: 39696760 DOI: 10.1002/bit.28905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Quantification of cyanobacterial CO2 fixation rates is vital to determining their potential as industrial strains in a circular bioeconomy. Currently, however, CO2 fixation rates are most often determined through indirect and/or low-resolution methods, resulting in an incomplete picture of both dynamic behaviors and total carbon fixation potential. To address this, we developed the "Automated Carbon and CO2 Experimental Sampling System" (ACCESS); a low-cost system for in situ off-gas analysis that supports the automated acquisition of high-resolution volumetric CO2 uptake rates from multiple cyanobacterial cultures in parallel. Carbon fixation data obtained via ACCESS were first independently validated by elemental analysis of cultivated biomass. Using ACCESS, we then demonstrate how the volumetric CO2 uptake rate of two model cyanobacteria, Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803, accelerates linearly to a maximum before then decaying monotonically to cessation by stationary phase. Furthermore, consistent with the expected stoichiometry, strong correlations were also found to exist between cell growth and carbon fixation, both in terms of rates as well as total levels. The novel insights made possible via ACCESS will aid other cyanobacterial researchers in diverse fundamental and applied research efforts.
Collapse
Affiliation(s)
- Christopher M Jones
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
| | - Sean Innes
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
| | - Steven Holland
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Tyson Burch
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Sydney Parrish
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
| | - David R Nielsen
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
2
|
Ohnishi N, Mukherjee B, Tsujikawa T, Yanase M, Nakano H, Moroney JV, Fukuzawa H. Expression of a low CO₂-inducible protein, LCI1, increases inorganic carbon uptake in the green alga Chlamydomonas reinhardtii. THE PLANT CELL 2010; 22:3105-17. [PMID: 20870960 PMCID: PMC2965534 DOI: 10.1105/tpc.109.071811] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 08/11/2010] [Accepted: 09/07/2010] [Indexed: 05/19/2023]
Abstract
Aquatic photosynthetic organisms can modulate their photosynthesis to acclimate to CO₂-limiting stress by inducing a carbon-concentrating mechanism (CCM) that includes carbonic anhydrases and inorganic carbon (Ci) transporters. However, to date, Ci-specific transporters have not been well characterized in eukaryotic algae. Previously, a Chlamydomonas reinhardtii mutant (lcr1) was identified that was missing a Myb transcription factor. This mutant had reduced light-dependent CO₂ gas exchange (LCE) activity when grown under CO₂-limiting conditions and did not induce the CAH1 gene encoding a periplasmic carbonic anhydrase, as well as two as yet uncharacterized genes, LCI1 and LCI6. In this study, LCI1 was placed under the control of the nitrate reductase promoter, allowing for the induction of LCI1 expression by nitrate in the absence of other CCM components. When the expression of LCI1 was induced in the lcr1 mutant under CO₂-enriched conditions, the cells showed an increase in LCE activity, internal Ci accumulation, and photosynthetic affinity for Ci. From experiments using indirect immunofluorescence, LCI1-green fluorescent protein fusions, and cell fractionation procedures, it appears that LCI1 is mainly localized to the plasma membrane. These results provide strong evidence that LCI1 may contribute to the CCM as a component of the Ci transport machinery in the plasma membrane.
Collapse
Affiliation(s)
- Norikazu Ohnishi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Bratati Mukherjee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Tomoki Tsujikawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Mari Yanase
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hirobumi Nakano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - James V. Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Address correspondence to
| |
Collapse
|
3
|
Burey SC, Poroyko V, Ergen ZN, Fathi-Nejad S, Schüller C, Ohnishi N, Fukuzawa H, Bohnert HJ, Löffelhardt W. Acclimation to low [CO(2)] by an inorganic carbon-concentrating mechanism in Cyanophora paradoxa. PLANT, CELL & ENVIRONMENT 2007; 30:1422-35. [PMID: 17897412 DOI: 10.1111/j.1365-3040.2007.01715.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The glaucocystophyte Cyanophora paradoxa contains cyanelles, plastids with prokaroytic features such as a peptidoglycan wall and a central proteinaceous inclusion body. While this central body includes the majority of the enzyme ribulose 1,5-bisphosphate carboxylase/oxgenase Rubisco), the presence of a carbon-concentrating mechanism (CCM) in C. paradoxa has only been hypothesized. Here, we present physiological data in support of a CCM: CO(2) exchange activity as well as apparent affinity against inorganic carbon were found to increase under CO(2)-limiting stress. Further, expressed sequence tags (ESTs) of C. paradoxa were obtained from two cDNA libraries, one from cells grown in high [CO(2)] conditions and one from cells grown under low [CO(2)] conditions. A cDNA microarray platform assembled from 2378 cDNA sequences revealed that 142 genes significantly responded to a shift from high to low [CO(2)]. Trends in gene expression were comparable to those reported for Chlamydomonas reinhardtii and the cyanobacterium Synechocystis 6803, both possessing a CCM. Among genes regulated by [CO(2)], transcripts were identified encoding carbonic anhydrases (CAs), Rubisco activase and a putative bicarbonate transporter in C. paradoxa, likely functionally involved in the CCM. These results and the polyhedric appearance of the central body further support the hypothesis of a unique 'eukaryotic carboxysome' in Cyanophora.
Collapse
Affiliation(s)
- S C Burey
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry, Dr. Bohr-Gasse 9/5, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Spalding MH. Effect of photon flux density on inorganic carbon accumulation and net CO2 exchange in a high-CO 2-requiring mutant of Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 1990; 24:245-252. [PMID: 24420077 DOI: 10.1007/bf00032312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/1989] [Accepted: 01/05/1990] [Indexed: 06/03/2023]
Abstract
The effect of photon flux density on inorganic carbon accumulation and photosynthetic CO2 assimilation was determined by CO2 exchange studies at three, limiting CO2 concentrations with a ca-1 mutant of Chlamydomonas reinhardiii. This mutant accumulates a large internal inorganic carbon pool in the light which apparently is unavailable for photosynthetic assimilation. Although steady-state photosynthetic CO2 assimilation did not respond to the varying photon flux densities because of CO2 limitation, components of inorganic-carbon accumulation were not clearly light saturated even at 1100 μmol photons m(-2) s(-1), indicating a substantial energy requirement for inorganic carbon transport and accumulation. Steady-state photosynthetic CO2 assimilation responded to external CO2 concentrations but not to changing internal inorganic carbon concentrations, confirming that diffusion of CO2 into the cells supplies most of the CO2 for photosynthetic assimilation and that the internal inorganic carbon pool is essentially unavailable for photosynthetic assimilation. The estimated concentration of the internal inorganic carbon pool was found to be relatively insensitive to the external CO2 concentration over the small range tested, as would be expected if the concentration of this pool is limited by the internal to external inorganic carbon gradient. An attempt to use this CO2 exchange method to determine whether inorganic carbon accumulation and photosynthetic CO2 assimilation compete for energy at low photon flux densities proved inconclusive.
Collapse
Affiliation(s)
- M H Spalding
- Department of Botany, Iowa State University, 50011-1020, Ames, Iowa, USA
| |
Collapse
|
5
|
Suzuki K, Spalding MH. Effect of O2 and CO 2 on net CO 2 exchange in a high-CO 2-requiring mutant of Chlamydomonas reinhardtii during dark-light-dark transitions. PHOTOSYNTHESIS RESEARCH 1989; 21:181-186. [PMID: 24424613 DOI: 10.1007/bf00037182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/1988] [Accepted: 11/03/1988] [Indexed: 06/03/2023]
Abstract
Net CO2 exchange was monitored through a dark-light-dark transition, under 2% and 21% O2 in the presence and absence of CO2, in Chlamydomonas reinhardtii wild type and the high-CO2-requiring mutant ca-1-12-1C. Upon illumination at 350 μl/l CO2, ca-1-12-1C cell exhibited a large decrease in net CO2 uptake following an initial surge of CO2 uptake. Net CO2 uptake subsequently attained a steady-state rate substantially lower than the maximum. A large, O2-enchanced post-illumination burst of CO2 efflux was observed after a 10-min illumination period, corresponding to a minimum in the net CO2 uptake rate. A smaller, but O2-insensitive post-illumination burst was observed following a 30-min illumination period, when net CO2 uptake was at a steady-state rate. These post-illumination bursts appeared to reflect the release of an intracellular pool of inorganic carbon, which was much larger following the initial surge of net CO2 uptake than during the subsequent steady-state CO2 uptake period.With the mutant in CO2-free gas, O2-stimulated, net CO2 efflux was observed in the light, and a small, O2-dependent post-illumination burst was observed. With wild-type cells no CO2 efflux was observed in the light in CO2-free gas under either 2% or 21% O2, but a small, O2-dependent post-illumination burst was observed. These results were interpreted as indicating that photorespiratory rates were similar in the mutant and wild-type cells in the absence of CO2, but that the wild-type cells were better able to scavenge the photorespiratory CO2.
Collapse
Affiliation(s)
- K Suzuki
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, 305, Ibaraki, Japan
| | | |
Collapse
|
6
|
Spalding MH, Portis AR. A model of carbon dioxide assimilation in Chlamydomonas reinhardii. PLANTA 1985; 164:308-20. [PMID: 24249600 DOI: 10.1007/bf00402942] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/1984] [Accepted: 12/12/1984] [Indexed: 05/19/2023]
Abstract
A simple model of photosynthetic CO2 assimilation in Chlamydomonas has been developed in order to evaluate whether a CO2-concentrating system could explain the photosynthetic characteristics of this alga (high apparent affinity for CO2, low photorespiration, little O2 inhibition of photosynthesis, and low CO2 compensation concentration). Similarly, the model was developed to evaluate whether the proposed defects in the CO2-concentrating system of two Chlamydomonas mutants were consistent with their observed photosynthetic characteristics. The model treats a Chlamydomonas cell as a single compartment with two carbon inputs: passive diffusion of CO2, and active transport of HCO 3 (-) . Internal inorganic carbon was considered to have two potential fates: assimilation to fixed carbon via ribulose 1,5-bisphosphate carboxylase-oxygenase or exiting the cell by either passive CO2 diffusion or reversal of HCO 3 (-) transport. Published values for kinetic parameters were used where possible. The model accurately reproduced the CO2-response curves of photosynthesis for wild-type Chlamydomonas, the two mutants defective in the CO2-concentrating system, and a double mutant constructed by crossing these two mutants. The model also predicts steady-state internal inorganic-carbon concentrations in reasonable agreement with measured values in all four cases. Carbon dioxide compensation concentrations for wild-type Chlamydomonas were accurately predicted by the model and those predicted for the mutants were in qualitative agreement with measured values. The model also allowed calculation of approximate energy costs of the CO2-concentrating system. These calculations indicate that the system may be no more energy-costly than C4 photosynthesis.
Collapse
Affiliation(s)
- M H Spalding
- MSU/DOE Plant Research Laboratory, Michigan State University, 48824, East Lansing, MI
| | | |
Collapse
|