1
|
Medina RG, Paxton RJ, De Luna E, Fleites-Ayil FA, Medina Medina LA, Quezada-Euán JJG. Developmental stability, age at onset of foraging and longevity of Africanized honey bees (Apis mellifera L.) under heat stress (Hymenoptera: Apidae). J Therm Biol 2018; 74:214-225. [PMID: 29801630 DOI: 10.1016/j.jtherbio.2018.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/17/2022]
Abstract
Beekeeping with the western honey bee (Apis mellifera) is important in tropical regions but scant information is available on the possible consequences of global warming for tropical beekeeping. We evaluated the effect of heat stress on developmental stability, the age at onset of foraging (AOF) and longevity in Africanized honey bees (AHBs) in the Yucatan Peninsula of Mexico, one of the main honey producing areas in the Neotropics, where high temperatures occur in spring and summer. To do so, we reared worker AHB pupae under a fluctuating temperature regime, simulating current tropical heatwaves, with a high temperature peak of 40.0 °C for 1 h daily across six days, and compared them to control pupae reared at stable temperatures of 34.0-35.5 °C. Heat stress did not markedly affect overall body size, though the forewing of heat-stressed bees was slightly shorter than controls. However, bees reared under heat stress showed significantly greater fluctuating asymmetry (FA) in forewing shape. Heat stress also decreased AOF and reduced longevity. Our results show that changes occur in the phenotype and behavior of honey bees under heat stress, with potential consequences for colony fitness.
Collapse
Affiliation(s)
- Rubén G Medina
- Departamento de Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apdo. Postal 97100, Mérida, Yucatán, Mexico.
| | - Robert J Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Efraín De Luna
- Biodiversidad y Sistemática, Instituto de Ecología, A.C. Xalapa, Mexico
| | - Fernando A Fleites-Ayil
- Departamento de Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apdo. Postal 97100, Mérida, Yucatán, Mexico
| | - Luis A Medina Medina
- Departamento de Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apdo. Postal 97100, Mérida, Yucatán, Mexico
| | - José Javier G Quezada-Euán
- Departamento de Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apdo. Postal 97100, Mérida, Yucatán, Mexico
| |
Collapse
|
2
|
Clarke GM. THE GENETIC BASIS OF DEVELOPMENTAL STABILITY. III. HAPLO-DIPLOIDY: ARE MALES MORE UNSTABLE THAN FEMALES? Evolution 2017; 51:2021-2028. [PMID: 28565098 DOI: 10.1111/j.1558-5646.1997.tb05124.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/1997] [Accepted: 06/30/1997] [Indexed: 11/30/2022]
|
3
|
Łopuch S, Tofilski A. The relationship between asymmetry, size and unusual venation in honey bees (Apis mellifera). BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:304-313. [PMID: 27241228 DOI: 10.1017/s0007485315000784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite the fact that symmetry is common in nature, it is rarely perfect. Because there is a wide range of phenotypes which differs from the average one, the asymmetry should increase along with deviation. Therefore, the aim of this study was to assess the level of asymmetry in normal individuals as well as in phenodeviants categorized as minor or major based on abnormalities in forewing venation in honey bees. Shape fluctuating asymmetry (FA) was lower in normal individuals and minor phenodeviants compared with major phenodeviants, whereas the former two categories were comparable in drones. In workers and queens, there were not significant differences in FA shape between categories. FA size was significantly lower in normal individuals compared with major phenodeviant drones and higher compared with minor phenodeviant workers. In queens, there were no significant differences between categories. The correlation between FA shape and FA size was significantly positive in drones, and insignificant in workers and queens. Moreover, a considerable level of directional asymmetry was found as the right wing was constantly bigger than the left one. Surprisingly, normal individuals were significantly smaller than minor phenodeviants in queens and drones, and they were comparable with major phenodeviants in all castes. The correlation between wing size and wing asymmetry was negative, indicating that smaller individuals were more asymmetrical. The high proportion of phenodeviants in drones compared with workers and queens confirmed their large variability. Thus, the results of the present study showed that minor phenodeviants were not always intermediate as might have been expected.
Collapse
Affiliation(s)
- S Łopuch
- Department of Pomology and Apiculture,Agricultural University,29 Listopada 54,31-425 Krakow,Poland
| | - A Tofilski
- Department of Pomology and Apiculture,Agricultural University,29 Listopada 54,31-425 Krakow,Poland
| |
Collapse
|
4
|
Pulcini D, Cataudella S, Boglione C, Russo T, Wheeler PA, Prestinicola L, Thorgaard GH. Testing the relationship between domestication and developmental instability in rainbow trout,Oncorhynchus mykiss(Teleostei, Salmonidae). Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Domitilla Pulcini
- Biology Department; ‘Tor Vergata’ University of Rome; Via della Ricerca Scientifica snc 00133 Rome Italy
- Council for Research in Agriculture - Animal Production Centre; Via Salaria 31 00016 Monterotondo Italy
| | - Stefano Cataudella
- Biology Department; ‘Tor Vergata’ University of Rome; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Clara Boglione
- Biology Department; ‘Tor Vergata’ University of Rome; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Tommaso Russo
- Biology Department; ‘Tor Vergata’ University of Rome; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Paul A. Wheeler
- School of Biological Sciences and Center for Reproductive Biology; Washington State University; Pullman WA USA
| | - Loredana Prestinicola
- Biology Department; ‘Tor Vergata’ University of Rome; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Gary H. Thorgaard
- School of Biological Sciences and Center for Reproductive Biology; Washington State University; Pullman WA USA
| |
Collapse
|
5
|
Quinto-Sánchez M, Adhikari K, Acuña-Alonzo V, Cintas C, Silva de Cerqueira CC, Ramallo V, Castillo L, Farrera A, Jaramillo C, Arias W, Fuentes M, Everardo P, de Avila F, Gomez-Valdés J, Hünemeier T, Gibbon S, Gallo C, Poletti G, Rosique J, Bortolini MC, Canizales-Quinteros S, Rothhammer F, Bedoya G, Ruiz-Linares A, González-José R. Facial asymmetry and genetic ancestry in Latin American admixed populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:58-70. [DOI: 10.1002/ajpa.22688] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 12/03/2014] [Accepted: 12/11/2014] [Indexed: 11/08/2022]
Affiliation(s)
| | - Kaustubh Adhikari
- Department of Genetics; Evolution and Environment; and UCL Genetics Institute; University College London; London UK
| | - Victor Acuña-Alonzo
- Department of Genetics; Evolution and Environment; and UCL Genetics Institute; University College London; London UK
- Escuela Nacional de Antropología e Historia; Instituto Nacional de Antropología e Historia; Distrito Federal Mexico
| | - Celia Cintas
- Centro Nacional Patagónico, CONICET; Puerto Madryn Argentina
| | | | | | - Lucia Castillo
- Centro Nacional Patagónico, CONICET; Puerto Madryn Argentina
| | - Arodi Farrera
- Posgrado en Antropología; Facultad de Filosofía y Letras; UNAM; México City Mexico
| | - Claudia Jaramillo
- Departamento de Antropología; Facultad de Ciencias Humanas y Sociales; Universidad de Antioquia; Medellín Colombia
| | - Williams Arias
- Departamento de Antropología; Facultad de Ciencias Humanas y Sociales; Universidad de Antioquia; Medellín Colombia
| | - Macarena Fuentes
- Instituto de Alta Investigación Universidad de Tarapacá, Programa de Genética Humana ICBM Facultad de Medicina Universidad de Chile y Centro de Investigaciones del Hombre en el Desierto; Arica Chile
| | - Paola Everardo
- Escuela Nacional de Antropología e Historia; Instituto Nacional de Antropología e Historia; Distrito Federal Mexico
| | - Francisco de Avila
- Escuela Nacional de Antropología e Historia; Instituto Nacional de Antropología e Historia; Distrito Federal Mexico
| | | | - Tábita Hünemeier
- Departamento de Genética; Instituto de Biociências, Universidade Federal do Rio Grande do Sul; Porto Alegre Brasil
| | - Shara Gibbon
- Department of Anthropology; University College London; London UK
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo; Facultad de Ciencias y Filosofía; Universidad Peruana Cayetano Heredia; Lima Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo; Facultad de Ciencias y Filosofía; Universidad Peruana Cayetano Heredia; Lima Perú
| | - Javier Rosique
- Departamento de Antropología; Facultad de Ciencias Humanas y Sociales; Universidad de Antioquia; Medellín Colombia
| | - Maria Cátira Bortolini
- Departamento de Genética; Instituto de Biociências, Universidade Federal do Rio Grande do Sul; Porto Alegre Brasil
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud; Facultad de Química; UNAM-Instituto Nacional de Medicina Genómica
| | - Francisco Rothhammer
- Instituto de Alta Investigación Universidad de Tarapacá, Programa de Genética Humana ICBM Facultad de Medicina Universidad de Chile y Centro de Investigaciones del Hombre en el Desierto; Arica Chile
| | - Gabriel Bedoya
- Departamento de Antropología; Facultad de Ciencias Humanas y Sociales; Universidad de Antioquia; Medellín Colombia
| | - Andres Ruiz-Linares
- Department of Genetics; Evolution and Environment; and UCL Genetics Institute; University College London; London UK
| | | |
Collapse
|
6
|
Jaffé R, Moritz RFA. Mating flights select for symmetry in honeybee drones (Apis mellifera). Naturwissenschaften 2009; 97:337-43. [DOI: 10.1007/s00114-009-0638-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/29/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
|
7
|
Karvonen E, Merilä J, Rintamäki PT, Van Dongen S. Geography of fluctuating asymmetry in the greenfinch,Carduelis chloris. OIKOS 2003. [DOI: 10.1034/j.1600-0706.2003.11851.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Schneider SS, Leamy LJ, Lewis LA, DeGrandi-Hoffman G. THE INFLUENCE OF HYBRIDIZATION BETWEEN AFRICAN AND EUROPEAN HONEYBEES, APIS MELLIFERA, ON ASYMMETRIES IN WING SIZE AND SHAPE. Evolution 2003. [DOI: 10.1554/02-609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Hosken DJ, Blanckenhorn WU, Ward PI. Developmental stability in yellow dung flies (Scathophaga stercoraria): fluctuating asymmetry, heterozygosity and environmental stress. J Evol Biol 2000. [DOI: 10.1046/j.1420-9101.2000.00239.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Vøllestad LA, Hindar K, Møller AP. A meta-analysis of fluctuating asymmetry in relation to heterozygosity. Heredity (Edinb) 1999; 83 ( Pt 2):206-18. [PMID: 10469209 DOI: 10.1046/j.1365-2540.1999.00555.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluctuating asymmetry, the random departure from perfect bilateral symmetry, is a common measure of developmental instability that has been hypothesized to be inversely correlated with heterozygosity. Although this claim has been widely repeated, several studies have reported no such association. Therefore, we test the generality of this association, using meta-analysis, by converting test statistics for the relationship between heterozygosity (H) and fluctuating asymmetry (FA) into a common effect size, the Pearson's product-moment correlation coefficient. We have analysed a database containing 41 studies with a total of 118 individual samples. Overall we found an unweighted mean negative effect size; r=-0.09 (i. e. a negative correlation between H and FA). Significant heterogeneity in effect size was mainly caused by a difference between ectothermic and endothermic animals, and to a lesser extent by the use of different study designs (i.e. within-population vs. among-populations). Mean effect size for endothermic animals was positive and significantly different from the mean effect size for ectothermic animals. Only for within-population studies of ectothermic animals did we find a significantly negative effect size (r=-0.23 +/- 0.09). The distribution of effect sizes in relation to sample size provided little evidence for patterns typical of those produced by publication bias. Our analysis suggests, at best, only a weak association between H and FA, and heterozygosity seems to explain only a very small amount of the variation in developmental instability among individuals and populations (r2=0.01 for the total material).
Collapse
Affiliation(s)
- L A Vøllestad
- Department of Biology, Division of Zoology, University of Oslo, PO Box 1050 Blindern, N-0316 Oslo, Norway.
| | | | | |
Collapse
|
11
|
Clarke GM. The genetic basis of developmental stability. V. Inter- and intra-individual character variation. Heredity (Edinb) 1998. [DOI: 10.1046/j.1365-2540.1998.00294.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Clarke GM. The genetic basis of developmental stability. IV. Individual and population asymmetry parameters. Heredity (Edinb) 1998. [DOI: 10.1046/j.1365-2540.1998.00326.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Fluctuating asymmetry in vestigial and functional traits of a haplodiploid insect. Heredity (Edinb) 1997. [DOI: 10.1038/hdy.1997.208] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|