1
|
Lin H, Su M, Zhu H, Yu Y, Sang J, Wang Y, Zhu Q, Zhu Y, Li X, Li X, Ge RS, Li H. Cyclopiazonic acid suppresses the function of Leydig cells in prepubertal male rats by disrupting mitofusin 1-mediated mitochondrial function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117503. [PMID: 39672039 DOI: 10.1016/j.ecoenv.2024.117503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
This research investigated the impact of cyclopiazonic acid (CPA), a mycotoxin, on the function of progenitor Leydig cells (PLCs) in prepubertal male rats, focusing on its potential disruption of mitochondrial integrity through mitofusin 1 (MFN1) modulation. In vivo, Sprague Dawley rats received CPA (0.2, 1, 5 mg/kg/day) via gavage from postnatal days 21-28 to evaluate PLC function and mitochondrial morphology using serum hormone levels, histology, qPCR, and Western blot analyses. In vitro, rat R2C cells were treated with CPA (0.1, 1, 10 μM) alone or in combination with 100 μM leflunomide to assess PLC development through testosterone measurements, Western blotting, flow cytometry, and Mito-Tracker Green Staining. The findings from in vivo experiments showed that CPA reduced serum testosterone and progesterone levels at 1 mg/kg/day. The qPCR and Western blotting analyses revealed significant alterations in the expression of genes and proteins pertinent to PLC function, such as Scarb1, Star, Cyp11a1, and Cyp17a1. Immunofluorescence staining further revealed a reduction in MFN1 expression following exposure to CPA. In vitro experiments corroborated these observations, demonstrating that CPA induced mitochondrial fragmentation by downregulating SIRT1, PGC1-α, MFN1, and OPA1, increase reactive oxygen species, and inhibit testosterone synthesis in R2C cells. The administration of leflunomide was shown to mitigate the detrimental effects of CPA on PLCs. In conclusion, this research sheds new light on the deleterious effects of CPA on the reproductive development of prepubertal males.
Collapse
Affiliation(s)
- Hang Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ming Su
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - He Zhu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yang Yu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jianmin Sang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qiqi Zhu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yang Zhu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaoheng Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xingwang Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
2
|
Li H, Su M, Lin H, Li J, Wang S, Ye L, Li X, Ge R. Patulin Stimulates Progenitor Leydig Cell Proliferation but Delays Its Differentiation in Male Rats during Prepuberty. Toxins (Basel) 2023; 15:581. [PMID: 37756007 PMCID: PMC10538017 DOI: 10.3390/toxins15090581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Patulin is a mycotoxin with potential reproductive toxicity. We explored the impact of patulin on Leydig cell (LC) development in male rats. Male Sprague Dawley rats (21 days postpartum) were gavaged patulin at doses of 0.5, 1, and 2 mg/kg/day for 7 days. Patulin markedly lowered serum testosterone at ≥0.5 mg/kg and progesterone at 1 and 2 mg/kg, while increasing LH levels at 2 mg/kg. Patulin increased the CYP11A1+ (cholesterol side-chain cleavage, a progenitor LC biomarker) cell number and their proliferation at 1 and 2 mg/kg. Additionally, patulin downregulated Lhcgr (luteinizing hormone receptor), Scarb1 (high-density lipoprotein receptor), and Cyp17a1 (17α-hydroxylase/17,20-lyase) at 1 and 2 mg/kg. It increased the activation of pAKT1 (protein kinase B), pERK1/2 (extracellular signal-related kinases 1 and 2), pCREB (cyclic AMP response binding protein), and CCND1 (cyclin D1), associated with cell cycle regulation, in vivo. Patulin increased EdU incorporation into R2C LC and stimulated cell cycle progression in vitro. Furthermore, patulin showed a direct inhibitory effect on 11β-HSD2 (11β-hydroxysteroid dehydrogenase 2) activity, which eliminates the adverse effects of glucocorticoids. This study provides insights into the potential mechanisms via which patulin affects progenitor LC development in young male rats.
Collapse
Affiliation(s)
- Huitao Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ming Su
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Hang Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Jingjing Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Shaowei Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Lei Ye
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Xingwang Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Renshan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
4
|
Jack KM, Schoof VAM, Sheller CR, Rich CI, Klingelhofer PP, Ziegler TE, Fedigan L. Hormonal correlates of male life history stages in wild white-faced capuchin monkeys (Cebus capucinus). Gen Comp Endocrinol 2014; 195:58-67. [PMID: 24184868 PMCID: PMC3894788 DOI: 10.1016/j.ygcen.2013.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 11/24/2022]
Abstract
Much attention has been paid to hormonal variation in relation to male dominance status and reproductive seasonality, but we know relatively little about how hormones vary across life history stages. Here we examine fecal testosterone (fT), dihydrotestosterone (fDHT), and glucocorticoid (fGC) profiles across male life history stages in wild white-faced capuchins (Cebus capucinus). Study subjects included 37 males residing in three habituated social groups in the Área de Conservacíon Guanacaste, Costa Rica. Male life history stages included infant (0 to <12months; N=3), early juvenile (1 to <3years; N=10), late juvenile (3 to <6years; N=9), subadult (6 to <10years; N=8), subordinate adult (⩾10years; N=3), and alpha adult (⩾10years; N=4, including one recently deposed alpha). Life history stage was a significant predictor of fT; levels were low throughout the infant and juvenile phases, doubled in subadult and subordinate adults, and were highest for alpha males. Life history stage was not a significant predictor of fDHT, fDHT:fT, or fGC levels. Puberty in white-faced capuchins appears to begin in earnest during the subadult male phase, indicated by the first significant rise in fT. Given their high fT levels and exaggerated secondary sexual characteristics, we argue that alpha adult males represent a distinctive life history stage not experienced by all male capuchins. This study is the first to physiologically validate observable male life history stages using patterns of hormone excretion in wild Neotropical primates, with evidence for a strong association between fT levels and life history stage.
Collapse
Affiliation(s)
- Katharine M Jack
- Tulane University, Department of Anthropology, 101 Dinwiddie Hall, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | - Valérie A M Schoof
- Tulane University, Department of Anthropology, 101 Dinwiddie Hall, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | - Claire R Sheller
- Tulane University, Department of Anthropology, 101 Dinwiddie Hall, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | - Catherine I Rich
- Tulane University, Department of Anthropology, 101 Dinwiddie Hall, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | - Peter P Klingelhofer
- Tulane University, Department of Anthropology, 101 Dinwiddie Hall, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | - Toni E Ziegler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Court, Madison, WI 53715, USA.
| | - Linda Fedigan
- University of Calgary, Department of Anthropology, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
9
|
Wiener JS, Teague JL, Roth DR, Gonzales ET, Lamb DJ. Molecular Biology and Function of the Androgen Receptor in Genital Development. J Urol 1997. [DOI: 10.1016/s0022-5347(01)64995-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- John S. Wiener
- From the Scott Department of Urology, Department of Cell Biology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, and Division of Urology, Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - J. Lynn Teague
- From the Scott Department of Urology, Department of Cell Biology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, and Division of Urology, Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - David R. Roth
- From the Scott Department of Urology, Department of Cell Biology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, and Division of Urology, Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Edmond T. Gonzales
- From the Scott Department of Urology, Department of Cell Biology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, and Division of Urology, Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Dolores J. Lamb
- From the Scott Department of Urology, Department of Cell Biology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, and Division of Urology, Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|