1
|
Kellum AH, Qiu DY, Voehler MW, Martin W, Gates KS, Stone MP. Structure of a Stable Interstrand DNA Cross-Link Involving a β- N-Glycosyl Linkage Between an N6-dA Amino Group and an Abasic Site. Biochemistry 2020; 60:41-52. [PMID: 33382597 DOI: 10.1021/acs.biochem.0c00596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abasic (AP) sites are one of the most common forms of DNA damage. The deoxyribose ring of AP sites undergoes anomerization between α and β configurations, via an electrophilic aldehyde intermediate. In sequences where an adenine residue is located on the opposing strand and offset 1 nt to the 3' side of the AP site, the nucleophilic N6-dA amino group can react with the AP aldehyde residue to form an interstrand cross-link (ICL). Here, we present an experimentally determined structure of the dA-AP ICL by NMR spectroscopy. The ICL was constructed in the oligodeoxynucleotide 5'-d(T1A2T3G4T5C6T7A8A9G10T11T12C13A14T15C16T17A18)-3':5'-d(T19A20G21A22T23G24A25A26C27X28T29A30G31A32C33A34T35A36)-3' (X=AP site), with the dA-AP ICL forming between A8 and X28. The NMR spectra indicated an ordered structure for the cross-linked DNA duplex and afforded detailed spectroscopic resonance assignments. Structural refinement, using molecular dynamics calculations restrained by NOE data (rMD), revealed the structure of the ICL. In the dA-AP ICL, the 2'-deoxyribosyl ring of the AP site was ring-closed and in the β configuration. Juxtapositioning the N6-dA amino group and the aldehydic C1 of the AP site within bonding distance while simultaneously maintaining two flanking unpaired A9 and T29 bases stacked within the DNA is accomplished by the unwinding of the DNA at the ICL. The structural data is discussed in the context of recent studies describing the replication-dependent unhooking of the dA-AP ICL by the base excision repair glycosylase NEIL3.
Collapse
Affiliation(s)
- Andrew H Kellum
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - David Y Qiu
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Markus W Voehler
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - William Martin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kent S Gates
- Departments of Chemistry and Biochemistry, University of Missouri, Columbia, Missouri 65221, United States
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
2
|
Haider S, Li P, Khiali S, Munnur D, Ramanathan A, Parkinson GN. Holliday Junctions Formed from Human Telomeric DNA. J Am Chem Soc 2018; 140:15366-15374. [PMID: 30376323 DOI: 10.1021/jacs.8b08699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cells have evolved inherent mechanisms, like homologous recombination (HR), to repair damaged DNA. However, repairs at telomeres can lead to genomic instability, often associated with cancer. While most rapidly dividing cells employ telomerase, the others maintain telomere length through HR-dependent alternative lengthening of telomeres (ALT) pathways. Here we describe the crystal structures of Holliday junction intermediates of the HR-dependent ALT mechanism. Using an extended human telomeric repeat, we also report the crystal structure of two Holliday junctions in close proximity, which associate together through strand exchange to form a hemicatenated double Holliday junction. Our combined structural results demonstrate that ACC nucleotides in the C-rich lagging strand (5'-CTAACCCTAA-3') at the telomere repeat sequence constitute a conserved structural feature that constrains crossover geometry and is a preferred site for Holliday junction formation in telomeres.
Collapse
Affiliation(s)
- Shozeb Haider
- UCL School of Pharmacy , University College London , London WC1N 1AX , United Kingdom
| | - Pengfei Li
- UCL School of Pharmacy , University College London , London WC1N 1AX , United Kingdom
| | - Soraia Khiali
- UCL School of Pharmacy , University College London , London WC1N 1AX , United Kingdom
| | - Deeksha Munnur
- Dunn School of Pathology , University of Oxford , Oxford OX1 3RE , United Kingdom
| | - Arvind Ramanathan
- Computational Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | - Gary N Parkinson
- UCL School of Pharmacy , University College London , London WC1N 1AX , United Kingdom
| |
Collapse
|
3
|
Liu Y, Guo P, Lam SL. Formation of a DNA Mini-Dumbbell with a Quasi-Type II Loop. J Phys Chem B 2017; 121:2554-2560. [DOI: 10.1021/acs.jpcb.7b00556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Pei Guo
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
4
|
Politica DA, Malik CK, Basu AK, Stone MP. Base-Displaced Intercalated Structure of the N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone DNA Adduct. Chem Res Toxicol 2015; 28:2253-66. [PMID: 26641105 DOI: 10.1021/acs.chemrestox.5b00277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
3-Nitrobenzanthrone (3-NBA), an environmental mutagen found in diesel exhaust and a suspected carcinogen, undergoes metabolic reduction followed by reaction with DNA to form aminobenzanthrone (ABA) adducts, with the major alkylation product being N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (C8-dG-ABA). Site-specific synthesis of the C8-dG-ABA adduct in the oligodeoxynucleotide 5'-d(GTGCXTGTTTGT)-3':5'-d(ACAAACACGCAC)-3'; X = C8-dG-ABA adduct, including codons 272-275 of the p53 gene, has allowed for investigation into the structural and thermodynamic properties of this adduct. The conformation of the C8-dG-ABA adduct was determined using NMR spectroscopy and was refined using molecular dynamics (MD) calculations restrained by experimentally determined interproton distance restraints obtained from NOE experiments. The refined structure revealed that the C8-dG-ABA adduct formed a base-displaced intercalated conformation. The adducted guanine was shifted into the syn conformation about the glycosidic bond. The 5'- and 3'-neighboring base pairs remained intact. While this facilitated π-stacking interactions between the ABA moiety and neighboring bases, the thermal melting temperature (Tm) of the adduct-containing duplex showed a decrease of 11 °C as compared to the corresponding unmodified oligodeoxynucleotide duplex. Overall, in this sequence, the base-displaced intercalated conformation of the C8-dG-ABA lesion bears similarity to structures of other arylamine C8-dG adducts. However, in this sequence, the base-displaced intercalated conformation for the C8-dG-ABA adduct differs from the conformation of the N(2)-dG-ABA adduct reported by de los Santos and co-workers, in which it is oriented in the minor groove toward the 5' end of the duplex, with the modified guanine remaining in the anti conformation about the glyosidic torsion angle, and the complementary base remaining within the duplex. The results are discussed in relationship to differences between the C8-dG-ABA and N(2)-dG-ABA adducts with respect to susceptibility to nucleotide excision repair (NER).
Collapse
Affiliation(s)
- Dustin A Politica
- Departments of Chemistry and Biochemistry, Center in Molecular Toxicology, Vanderbilt Institute of Chemical Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Chanchal K Malik
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Michael P Stone
- Departments of Chemistry and Biochemistry, Center in Molecular Toxicology, Vanderbilt Institute of Chemical Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Casals J, Viladoms J, Pedroso E, González C. Structure and stability of a dimeric g-quadruplex formed by cyclic oligonucleotides. J Nucleic Acids 2010; 2010. [PMID: 20725624 PMCID: PMC2915814 DOI: 10.4061/2010/468017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 03/12/2010] [Indexed: 12/11/2022] Open
Abstract
We have studied the structure and stability of the cyclic dodecamer d<pGGGTTAGGGTTA>,
containing two copies of the human telomeric repeat. In the presence of sodium, NMR data are consistent with a dimeric structure of the molecule in which two cycles self-associate forming a quadruplex with three guanine tetrads connected by edgewise loops. The two macrocycles are arranged in a parallel way, and the dimeric structure exhibits a high melting temperature. These results indicate that cyclization of the phosphodiester chain does not prevent quadruplex formation, although it affects the global topology of the quadruplex.
Collapse
Affiliation(s)
- Joan Casals
- Departament de Química Orgànica, Universitat de Barcelona, C/. Martí i Franquès 1, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
6
|
Escaja N, Gómez-Pinto I, Pedroso E, Gonzalez C. Four-Stranded DNA Structures Can Be Stabilized by Two Different Types of Minor Groove G:C:G:C Tetrads. J Am Chem Soc 2007; 129:2004-14. [PMID: 17260988 DOI: 10.1021/ja066172z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four-stranded nucleic acid structures are central to many processes in biology and in supramolecular chemistry. It has been shown recently that four-stranded DNA structures are not only limited to the classical guanine quadruplex but also can be formed by tetrads resulting from the association of Watson-Crick base pairs. Such an association may occur through the minor or the major groove side of the base pairs. Structures stabilized by minor groove tetrads present distinctive features, clearly different from the canonical guanine quadruplex, making these quadruplexes a unique structural motif. Within our efforts to study the sequence requirements for the formation of this unusual DNA motif, we have determined the solution structure of the cyclic oligonucleotide dpCCGTCCGT by two-dimensional NMR spectroscopy and restrained molecular dynamics. This molecule self-associates, forming a symmetric dimer stabilized by two G:C:G:C tetrads with intermolecular G-C base pairs. Interestingly, although the overall three-dimensional structure is similar to that found in other cyclic and linear oligonucleotides of related sequences, the tetrads that stabilize the structure of dpCCGTCCGT are different to other minor groove G:C:G:C tetrads found earlier. Whereas in previous cases the G-C base pairs aligned directly, in this new tetrad the relative position of the two base pairs is slipped along the axis defined by the base pairs. This is the first time that a quadruplex structure entirely stabilized by slipped minor groove G:C:G:C tetrads is observed in solution or in the solid state. However, an analogous arrangement of G-C base pairs occurs between the terminal residues of contiguous duplexes in some DNA crystals. This structural polymorphism between minor groove GC tetrads may be important in stabilization of higher order DNA structures.
Collapse
Affiliation(s)
- Núria Escaja
- Instituto de Química Física "Rocasolano", CSIC, C/, Serrano 119, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
7
|
Wu B, Girard F, van Buuren B, Schleucher J, Tessari M, Wijmenga S. Global structure of a DNA three-way junction by solution NMR: towards prediction of 3H fold. Nucleic Acids Res 2004; 32:3228-39. [PMID: 15199171 PMCID: PMC434450 DOI: 10.1093/nar/gkh645] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Three-way junctions (3H) are the simplest and most commonly occurring branched nucleic acids. They consist of three double helical arms (A to C), connected at the junction point, with or without a number of unpaired bases in one or more of the three different strands. Three-way junctions with two unpaired bases in one strand (3HS2) have a high tendency to adopt either of two alternative stacked conformations in which two of the three arms A, B and C are coaxially stacked, i.e. A/B-stacked or A/C-stacked. Empirical stacking rules, which successfully predict for DNA 3HS2 A/B-stacking preference from sequence, have been extended to A/C-stacked conformations. Three novel DNA 3HS2 sequences were designed to test the validity of these extended stacking rules and their conformational behavior was studied by solution NMR. All three show the predicted A/C-stacking preference even in the absence of multivalent cations. The stacking preference for both classes of DNA 3HS2 can thus be predicted from sequence. The high-resolution NMR solution structure for one of the stacked 3HS2 is also reported. It shows a well-defined local and global structure defined by an extensive set of classical NMR restraints and residual dipolar couplings. Analysis of its global conformation and that of other representatives of the 3H family, shows that the relative orientations of the stacked and non-stacked arms, are restricted to narrow regions of conformational space, which can be understood from geometric considerations. Together, these findings open up the possibility of full prediction of 3HS2 conformation (stacking and global fold) directly from sequence.
Collapse
Affiliation(s)
- Bin Wu
- Department of Physical Chemistry/Biophysical Chemistry, University of Nijmegen, Toernooiveld 1 6225 ED Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
8
|
Gómez-Pinto I, Marchán V, Gago F, Grandas A, González C. Solution structure and stability of a disulfide cross-linked nucleopeptide duplex. Chem Commun (Camb) 2004:2558-9. [PMID: 14594279 DOI: 10.1039/b307300a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR methods are used to study the structure and stability of the duplex formed by the nucleopeptide [Ac-Cys-Gly-Ala-Hse(p3'dGCATGC)-Ala-OH]2[S-S], in which the oligonucleotide is self-complementary and the cysteine residues of the two peptide chains form a disulfide bridge; thermal transitions and NMR-derived structural calculations are consistent with a 3-D structure in which the oligonucleotide forms a standard B-DNA helix without significant distortions; the peptide chains are relatively disordered in solution and lie in the minor groove of the DNA helix; this nucleopeptide duplex exhibits a high melting temperature, indicating that peptide-oligonucleotide conjugates containing cysteines are suitable molecules to establish cross-links between DNA strands and stabilize the duplex.
Collapse
Affiliation(s)
- Irene Gómez-Pinto
- Instituto de Química Física Rocasolano, C/Serrano 119, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
9
|
Escaja N, Gómez-Pinto I, Rico M, Pedroso E, González C. Structures and stabilities of small DNA dumbbells with Watson-Crick and Hoogsteen base pairs. Chembiochem 2003; 4:623-32. [PMID: 12851932 DOI: 10.1002/cbic.200300578] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The structures and stabilities of cyclic DNA octamers of different sequences have been studied by NMR and CD spectroscopy and by restrained molecular dynamics. At low oligonucleotide concentrations, some of these molecules form stable monomeric structures consisting of a short stem of two base pairs connected by two mini-loops of two residues. To our knowledge, these dumbbell-like structures are the smallest observed to date. The relative stabilities of these cyclic dumbbells have been established by studying their melting transitions. Dumbbells made up purely of GC stems are more stable than those consisting purely of AT base pairs. The order of the base pairs closing the loops also has an important effect on the stabilities of these structures. The NMR data indicate that there are significant differences between the solution structures of dumbbells with G-C base pairs in the stem compared to those with A-T base pairs. In the case of dumbbells with G-C base pairs, the residues in the stem form a short segment of a BDNA helix stabilized by two Watson-Crick base pairs. In contrast, in the case of d<pCATTCATT>, the stem is formed by two A-T base pairs with the glycosidic angles of the adenine bases in a syn conformation, most probably forming Hoogsteen base pairs. Although the conformations of the loop residues are not very well defined, the thymine residues at the first position of the loop are observed to fold back into the minor groove of the stem.
Collapse
Affiliation(s)
- Nuria Escaja
- Departament de Química Orgànica, Universitat de Barcelona, C/. Martì I Franquès 1-11, 08028-Barcelona, Spain
| | | | | | | | | |
Collapse
|
10
|
Abstract
Single-stranded DNA or double-stranded DNA has the potential to adopt a wide variety of unusual duplex and hairpin motifs in the presence (trans) or absence (cis) of ligands. Several principles for the formation of those unusual structures have been established through the observation of a number of recurring structural motifs associated with different sequences. These include: (i) internal loops of consecutive mismatches can occur in a B-DNA duplex when sheared base pairs are adjacent to each other to confer extensive cross- and intra-strand base stacking; (ii) interdigitated (zipper-like) duplex structures form instead when sheared G*A base pairs are separated by one or two pairs of purine*purine mismatches; (iii) stacking is not restricted to base, deoxyribose also exhibits the potential to do so; (iv) canonical G*C or A.T base pairs are flexible enough to exhibit considerable changes from the regular H-bonded conformation. The paired bases become stacked when bracketed by sheared G.A base pairs, or become extruded out and perpendicular to their neighboring bases in the presence of interacting drugs; (v) the purine-rich and pyrimidine-rich loop structures are notably different in nature. The purine-rich loops form compact triloop structures closed by a sheared G*A, A*A, A*C or sheared-like G(anti)*C(syn) base pair that is stacked by a single residue. On the other hand, the pyrimidine-rich loops with a thymidine in the first position exhibit no base pairing but are characterized by the folding of the thymidine residue into the minor groove to form a compact loop structure. Identification of such diverse duplex or hairpin motifs greatly enlarges the repertoire for unusual DNA structural formation.
Collapse
Affiliation(s)
- Shan-Ho Chou
- Department of Life Science, National Central University, Jung-Li, 320, Taiwan, ROC
| | | | | |
Collapse
|
11
|
Ippel HH, van den Elst H, van der Marel GA, van Boom JH, Altona C. Structural similarities and differences between H1- and H2-family DNA minihairpin loops: NMR studies of octameric minihairpins. Biopolymers 1998. [DOI: 10.1002/(sici)1097-0282(199811)46:6<375::aid-bip3>3.0.co;2-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Wiechelman K, Taylor ER. Anti-Syn conformational range of pyrimidines with deoxyribofuranose. J Biomol Struct Dyn 1998; 15:1181-94. [PMID: 9669563 DOI: 10.1080/07391102.1998.10509012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ability of pyrimidine bases to adopt the syn conformation in DNA has been investigated. The distances between atoms on the sugar and base and the resulting steric energies have been calculated as a function of glycosidic torsion angle for the principal sugar puckers of the deoxyribose of cytosine. The results indicate that pyrimidines can assume both the anti and syn conformations for the 3E, 4E, 1E, 2E, 3E sugar puckers and syn for the 2E sugar pucker. For these sugar puckers the difference between the minimum energies of the anti and syn conformations is in the range of 0.1-2.0 kcal/mole, with the minimum syn energy being lower in the case of the 4E, 1E and 2E sugar puckers. It is particularly significant that cytosine can assume the syn conformation for the 3E sugar pucker commonly observed for the syn nucleotides in Z-DNA with both alternating pyrimidine/purine (APP) and non-APP sequences. The results of this investigation confirm that steric interactions resulting from putting a pyrimidine nucleotide in the syn conformation are not a major factor in the preference for APP base sequences in Z-DNA.
Collapse
Affiliation(s)
- K Wiechelman
- Department of Chemistry, University of Southwestern Louisiana, Lafayette 70504-4370, USA
| | | |
Collapse
|
13
|
NMR Structure of Two Cyclic Oligonucleotides. A Monomer−Dimer Equilibrium between Dumbbell and Quadruplex Structures. J Am Chem Soc 1998. [DOI: 10.1021/ja973691g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Lynch SR, Tinoco I. The structure of the L3 loop from the hepatitis delta virus ribozyme: a syn cytidine. Nucleic Acids Res 1998; 26:980-7. [PMID: 9461457 PMCID: PMC147372 DOI: 10.1093/nar/26.4.980] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The structure of the L3 central hairpin loop isolated from the antigenomic sequence of the hepatitis delta virus ribozyme with the P2 and P3 stems from the ribozyme stacked on top of the loop has been determined by NMR spectroscopy. The 26 nt stem-loop structure contains nine base pairs and a 7 nt loop (5'-UCCUCGC-3'). This hairpin loop is critical for efficient catalysis in the intact ribozyme. The structure was determined using homonuclear and heteronuclear NMR techniques on non-labeled and15N-labeled RNA oligonucleotides. The overall root mean square deviation for the structure was 1.15 A (+/- 0.28 A) for the loop and the closing C.G base pair and 0.90 A (+/- 0.18 A) for the loop and the closing C.G base pair but without the lone purine in the loop, which is not well defined in the structure. The structure indicates a U.C base pair between the nucleotides on the 5'- and 3'-ends of the loop. This base pair is formed with a single hydrogen bond involving the cytosine exocyclic amino proton and the carbonyl O4 of the uracil. The most unexpected finding in the loop is a syn cytidine. While not unprecedented, syn pyrimidines are highly unusual. This one can be confidently established by intranucleotide distances between the ribose and the base determined by NMR spectroscopy. A similar study of the structure of this loop showed a somewhat different three-dimensional structure. A discussion of differences in the two structures, as well as possible sites of interaction with the cleavage site, will be presented.
Collapse
Affiliation(s)
- S R Lynch
- Department of Chemistry, University of California and Structural Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-1460, USA
| | | |
Collapse
|
15
|
Overmars FJ, Altona C. NMR study of the exchange rate between two stacked conformers of a model Holliday junction. J Mol Biol 1997; 273:519-24. [PMID: 9356242 DOI: 10.1006/jmbi.1997.1340] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our investigations into the folding behavior of a series of small model Holliday junctions in the presence of magnesium ions revealed a sequence (junction J9a) displaying a 71/29 population ratio between the two differently folded stacked X-conformers in slow exchange on the NMR chemical shift time scale. For the first time we report the rates of interconversion between two stacked X-conformers and their lifetimes as measured by chemical exchange (EXSY) NMR spectroscopy: k1 5.6 (+/-0.5) s-1, k-1 2.3 (+/-0.2) s-1. The corresponding lifetimes (tau=1/k) are: tau1 430 ms, tau2 180 ms and the conformational transition barrier amounts to DeltaGdouble dagger294 68 kJ/mol (16.2 kcal/mol). It is argued that this free-energy barrier reflects the maximum barrier that separates stacked X-conformers in junction 9a from the unfolded structure.
Collapse
Affiliation(s)
- F J Overmars
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, 2300 RA, The Netherlands
| | | |
Collapse
|
16
|
Overmars FJ, Lanzotti V, Galeone A, Pepe A, Mayol L, Pikkemaat JA, Altona C. Design and NMR study of an immobile DNA four-way junction containing 38 nucleotides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:576-83. [PMID: 9370369 DOI: 10.1111/j.1432-1033.1997.00576.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The DNA Holliday junction is a central intermediate in genetic recombination. We have designed and synthesized a DNA oligomer, J1a, as a model compound for the Holliday junction suitable to be studied by NMR spectroscopy and future molecular modelling. The design was based on a 46-base oligomer, J4, previously studied by Pikkemaat, J. A., van den Elst, H., van Boom, J. H. & Altona, C. [Biochemistry 33, 14896-14907 (1994)], including the propensity to undergo a self-folding process to give a four-way junction in which three of the four arms are capped with a hairpin loop. J1a, however, is considerably shortened by eight bases and thus contains only 38 residues which significantly facilitates the proton resonance assignments. The base sequence at the branch point is identical to that in J4. 1H-NMR data clearly point to the presence of three hairpin loops in J1a and show that the double-helical arms adopt the B-DNA form. Quasicontinuous pairwise stacking between helical arms to give a single preferred stacked X-conformation is evident. The extent of folding into this stacked conformation is strongly dependent upon the magnesium concentration. Full Watson-Crick base pairing at the branch point is completely preserved. The A/D-stacking preference of the small junction is the same as that exhibited by J4.
Collapse
Affiliation(s)
- F J Overmars
- Leiden Institute of Chemistry, Gorlaeus Laboratories, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Altona C, Pikkemaat JA, Overmars FJ. Three-way and four-way junctions in DNA: a conformational viewpoint. Curr Opin Struct Biol 1996; 6:305-16. [PMID: 8804833 DOI: 10.1016/s0959-440x(96)80048-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
DNA junctions are potential intermediates in various important genetic processes, including mutagenesis and recombination. The quantity of research carried out in this area is rapidly increasing. Examples of three-way and four-way junctions are now relatively well characterized and a few common properties have been recognized, of which the most important is the tendency of junctions to fold into one or more coaxially stacked helical conformations or cross-over structures.
Collapse
Affiliation(s)
- C Altona
- Leiden Institute of Chemistry, Gorlaeus, Laboratories, Leiden University, The Netherlands.
| | | | | |
Collapse
|