1
|
Khan S, Ansari A, Brachi M, Das D, El Housseini W, Minteer S, Miller AF. Structure, dynamics, and redox reactivity of an all-purpose flavodoxin. J Biol Chem 2024; 300:107122. [PMID: 38417793 PMCID: PMC10979112 DOI: 10.1016/j.jbc.2024.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024] Open
Abstract
The flavodoxin of Rhodopseudomonas palustris CGA009 (Rp9Fld) supplies highly reducing equivalents to crucial enzymes such as hydrogenase, especially when the organism is iron-restricted. By acquiring those electrons from photodriven electron flow via the bifurcating electron transfer flavoprotein, Rp9Fld provides solar power to vital metabolic processes. To understand Rp9Fld's ability to work with diverse partners, we solved its crystal structure. We observed the canonical flavodoxin (Fld) fold and features common to other long-chain Flds but not all the surface loops thought to recognize partner proteins. Moreover, some of the loops display alternative structures and dynamics. To advance studies of protein-protein associations and conformational consequences, we assigned the 19F NMR signals of all five tyrosines (Tyrs). Our electrochemical measurements show that incorporation of 3-19F-Tyr in place of Tyr has only a modest effect on Rp9Fld's redox properties even though Tyrs flank the flavin on both sides. Meanwhile, the 19F probes demonstrate the expected paramagnetic effect, with signals from nearby Tyrs becoming broadened beyond detection when the flavin semiquinone is formed. However, the temperature dependencies of chemical shifts and linewidths reveal dynamics affecting loops close to the flavin and regions that bind to partners in a variety of systems. These coincide with patterns of amino acid type conservation but not retention of specific residues, arguing against detailed specificity with respect to partners. We propose that the loops surrounding the flavin adopt altered conformations upon binding to partners and may even participate actively in electron transfer.
Collapse
Affiliation(s)
- Sharique Khan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Ahmadullah Ansari
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Monica Brachi
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Debarati Das
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | | | - Shelley Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA; Department of Chemistry, Kummer Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri, USA
| | | |
Collapse
|
2
|
Abstract
Nitrogenase is the only enzyme capable of reducing N2 to NH3. This challenging reaction requires the coordinated transfer of multiple electrons from the reductase, Fe-protein, to the catalytic component, MoFe-protein, in an ATP-dependent fashion. In the last two decades, there have been significant advances in our understanding of how nitrogenase orchestrates electron transfer (ET) from the Fe-protein to the catalytic site of MoFe-protein and how energy from ATP hydrolysis transduces the ET processes. In this review, we summarize these advances, with focus on the structural and thermodynamic redox properties of nitrogenase component proteins and their complexes, as well as on new insights regarding the mechanism of ET reactions during catalysis and how they are coupled to ATP hydrolysis. We also discuss recently developed chemical, photochemical, and electrochemical methods for uncoupling substrate reduction from ATP hydrolysis, which may provide new avenues for studying the catalytic mechanism of nitrogenase.
Collapse
Affiliation(s)
- Hannah L Rutledge
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
3
|
Kißling L, Greiser Y, Dürichen H, Studenik S. Flavodoxin hydroquinone provides electrons for the ATP-dependent reactivation of protein-bound corrinoid cofactors. FEBS J 2020; 287:4971-4981. [PMID: 32160390 DOI: 10.1111/febs.15290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/31/2020] [Accepted: 03/10/2020] [Indexed: 12/01/2022]
Abstract
Corrinoid-dependent enzyme systems rely on the super-reduced state of the protein-bound corrinoid cofactor to be functional, for example, in methyl transfer reactions. Due to the low redox potential of the [CoII ]/[CoI ] couple, autoxidation of the corrinoid cofactor occurs and leads to the formation of the inactive [CoII ]-state. For the reactivation, which is an energy-demanding process, electrons have to be transferred from a physiological donor to the corrinoid cofactor by the help of a reductive activator protein. In this study, we identified reduced flavodoxin as electron donor for the ATP-dependent reduction of protein-bound corrinoid cofactors of bacterial O-demethylase enzyme systems. Reduced flavodoxin was generated enzymatically using pyruvate:ferredoxin/flavodoxin oxidoreductase rather than hydrogenase. Two of the four flavodoxins identified in Acetobacterium dehalogenans and Desulfitobacterium hafniense DCB-2 were functional in supplying electrons for corrinoid reduction. They exhibited a midpoint potential of about -400 mV (ESHE , pH 7.5) for the semiquinone/hydroquinone transition. Reduced flavodoxin could be replaced by reduced clostridial ferredoxin. It was shown that the low-potential electrons of reduced flavodoxin are first transferred to the iron-sulfur cluster of the reductive activator and finally to the protein-bound corrinoid cofactor. This study further highlights the importance of reduced flavodoxin, which allows maintaining a variety of enzymatic reaction cycles by delivering low-potential electrons.
Collapse
Affiliation(s)
- Lena Kißling
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Yvonne Greiser
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hendrike Dürichen
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Sandra Studenik
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
4
|
Bertsova YV, Kulik LV, Mamedov MD, Baykov AA, Bogachev AV. Flavodoxin with an air-stable flavin semiquinone in a green sulfur bacterium. PHOTOSYNTHESIS RESEARCH 2019; 142:127-136. [PMID: 31302833 DOI: 10.1007/s11120-019-00658-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Flavodoxins are small proteins with a non-covalently bound FMN that can accept two electrons and accordingly adopt three redox states: oxidized (quinone), one-electron reduced (semiquinone), and two-electron reduced (quinol). In iron-deficient cyanobacteria and algae, flavodoxin can substitute for ferredoxin as the electron carrier in the photosynthetic electron transport chain. Here, we demonstrate a similar function for flavodoxin from the green sulfur bacterium Chlorobium phaeovibrioides (cp-Fld). The expression of the cp-Fld gene, found in a close proximity with the genes for other proteins associated with iron transport and storage, increased in a low-iron medium. cp-Fld produced in Escherichia coli exhibited the optical, ERP, and electron-nuclear double resonance spectra that were similar to those of known flavodoxins. However, unlike all other flavodoxins, cp-Fld exhibited unprecedented stability of FMN semiquinone to oxidation by air and difference in midpoint redox potentials for the quinone-semiquinone and semiquinone-quinol couples (- 110 and - 530 mV, respectively). cp-Fld could be reduced by pyruvate:ferredoxin oxidoreductase found in the membrane-free extract of Chl. phaeovibrioides cells and photo-reduced by the photosynthetic reaction center found in membrane vesicles from these cells. The green sulfur bacterium Chl. phaeovibrioides appears thus to be a new type of the photosynthetic organisms that can use flavodoxin as an alternative electron carrier to cope with iron deficiency.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Leonid V Kulik
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, Russia, 630090
- Novosibirsk State University, Novosibirsk, Russia, 630090
| | - Mahir D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.
| |
Collapse
|
5
|
Segal HM, Spatzal T, Hill MG, Udit AK, Rees DC. Electrochemical and structural characterization of Azotobacter vinelandii flavodoxin II. Protein Sci 2017; 26:1984-1993. [PMID: 28710816 PMCID: PMC5606536 DOI: 10.1002/pro.3236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 01/07/2023]
Abstract
Azotobacter vinelandii flavodoxin II serves as a physiological reductant of nitrogenase, the enzyme system mediating biological nitrogen fixation. Wildtype A. vinelandii flavodoxin II was electrochemically and crystallographically characterized to better understand the molecular basis for this functional role. The redox properties were monitored on surfactant-modified basal plane graphite electrodes, with two distinct redox couples measured by cyclic voltammetry corresponding to reduction potentials of -483 ± 1 mV and -187 ± 9 mV (vs. NHE) in 50 mM potassium phosphate, 150 mM NaCl, pH 7.5. These redox potentials were assigned as the semiquinone/hydroquinone couple and the quinone/semiquinone couple, respectively. This study constitutes one of the first applications of surfactant-modified basal plane graphite electrodes to characterize the redox properties of a flavodoxin, thus providing a novel electrochemical method to study this class of protein. The X-ray crystal structure of the flavodoxin purified from A. vinelandii was solved at 1.17 Å resolution. With this structure, the native nitrogenase electron transfer proteins have all been structurally characterized. Docking studies indicate that a common binding site surrounding the Fe-protein [4Fe:4S] cluster mediates complex formation with the redox partners Mo-Fe protein, ferredoxin I, and flavodoxin II. This model supports a mechanistic hypothesis that electron transfer reactions between the Fe-protein and its redox partners are mutually exclusive.
Collapse
Affiliation(s)
- Helen M Segal
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, 91125
| | - Thomas Spatzal
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, 91125
| | - Michael G Hill
- Division of Chemistry, Occidental College, Los Angeles, California, 90041
| | - Andrew K Udit
- Division of Chemistry, Occidental College, Los Angeles, California, 90041
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, 91125
| |
Collapse
|
6
|
Abstract
(1)H-, (11)B-, (13)C-, (15)N-, (17)O-, (19)F-, and (31)P-NMR chemical shifts of flavocoenzymes and derivatives of it, as well as of alloxazines and isoalloxazinium salts, from NMR experiments performed under various experimental conditions (e.g., dependence of the chemical shifts on temperature, concentration, solvent polarity, and pH) are reported. Also solid-state (13)C- and (15)N-NMR experiments are described revealing the anisotropic values of corresponding chemical shifts. These data, in combination with a number of coupling constants, led to a detailed description of the electronic structure of oxidized and reduced flavins. The data also demonstrate that the structure of oxidized flavin can assume a configuration deviating from coplanarity, depending on substitutions in the isoalloxazine ring, while that of reduced flavin exhibits several configurations, from almost planar to quite bended. The complexes formed between oxidized flavin and metal ions or organic molecules revealed three coordination sites with metal ions (depending on the chemical nature of the ion), and specific interactions between the pyrimidine moiety of flavin and organic molecules, mimicking specific interactions between apoflavoproteins and their coenzymes. Most NMR studies on flavoproteins were performed using (13)C- and (15)N-substituted coenzymes, either specifically enriched in the pterin moiety of flavin or uniformly labeled flavins. The chemical shifts of free flavins are used as a guide in the interpretation of the chemical shifts observed in flavoproteins. Although the hydrogen-bonding pattern in oxidized and reduced flavoproteins varies considerably, no correlation is obvious between these patterns and the corresponding redox potentials. In all reduced flavoproteins the N(1)H group of the flavocoenzyme is deprotonated, an exception is thioredoxin reductase. Three-dimensional structures of only a few flavoproteins, mostly belonging to the family of flavodoxins, have been solved. Also the kinetics of unfolding and refolding of flavodoxins has been investigated by NMR techniques. In addition, (31)P-NMR data of all so far studied flavoproteins and some (19)F-NMR spectra are discussed.
Collapse
Affiliation(s)
- Franz Müller
- , Wylstrasse 13, CH-6052, Hergiswil, Switzerland,
| |
Collapse
|
7
|
Hsieh YC, Chia TS, Fun HK, Chen CJ. Crystal structure of dimeric flavodoxin from Desulfovibrio gigas suggests a potential binding region for the electron-transferring partner. Int J Mol Sci 2013; 14:1667-83. [PMID: 23322018 PMCID: PMC3565340 DOI: 10.3390/ijms14011667] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/03/2012] [Accepted: 12/25/2012] [Indexed: 11/16/2022] Open
Abstract
Flavodoxins, which exist widely in microorganisms, have been found in various pathways with multiple physiological functions. The flavodoxin (Fld) containing the cofactor flavin mononucleotide (FMN) from sulfur-reducing bacteria Desulfovibrio gigas (D. gigas) is a short-chain enzyme that comprises 146 residues with a molecular mass of 15 kDa and plays important roles in the electron-transfer chain. To investigate its structure, we purified this Fld directly from anaerobically grown D. gigas cells. The crystal structure of Fld, determined at resolution 1.3 Å, is a dimer with two FMN packing in an orientation head to head at a distance of 17 Å, which generates a long and connected negatively charged region. Two loops, Thr59-Asp63 and Asp95-Tyr100, are located in the negatively charged region and between two FMN, and are structurally dynamic. An analysis of each monomer shows that the structure of Fld is in a semiquinone state; the positions of FMN and the surrounding residues in the active site deviate. The crystal structure of Fld from D. gigas agrees with a dimeric form in the solution state. The dimerization area, dynamic characteristics and structure variations between monomers enable us to identify a possible binding area for its functional partners.
Collapse
Affiliation(s)
- Yin-Cheng Hsieh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan; E-Mail:
| | - Tze Shyang Chia
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; E-Mails: (T.S.C.); (H.-K.F.)
| | - Hoong-Kun Fun
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; E-Mails: (T.S.C.); (H.-K.F.)
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; E-Mail:
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan; E-Mail:
- Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
- Institute of Biotechnology, National Cheng Kung University, Tainan City 70101, Taiwan
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan City 70101, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-3-5780281 (ext. 7330); Fax: +886-3-5783813
| |
Collapse
|
8
|
Structural and phylogenetic analysis of Rhodobacter capsulatus NifF: uncovering general features of nitrogen-fixation (nif)-flavodoxins. Int J Mol Sci 2013; 14:1152-63. [PMID: 23303276 PMCID: PMC3565313 DOI: 10.3390/ijms14011152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/14/2012] [Accepted: 11/20/2012] [Indexed: 11/21/2022] Open
Abstract
Analysis of the crystal structure of NifF from Rhodobacter capsulatus and its homologues reported so far reflects the existence of unique structural features in nif flavodoxins: a leucine at the re face of the isoalloxazine, an eight-residue insertion at the C-terminus of the 50’s loop and a remarkable difference in the electrostatic potential surface with respect to non-nif flavodoxins. A phylogenetic study on 64 sequences from 52 bacterial species revealed four clusters, including different functional prototypes, correlating the previously defined as “short-chain” with the firmicutes flavodoxins and the “long-chain” with gram-negative species. The comparison of Rhodobacter NifF structure with other bacterial flavodoxin prototypes discloses the concurrence of specific features of these functional electron donors to nitrogenase.
Collapse
|
9
|
Lindhoud S, van den Berg WAM, van den Heuvel RHH, Heck AJR, van Mierlo CPM, van Berkel WJH. Cofactor binding protects flavodoxin against oxidative stress. PLoS One 2012; 7:e41363. [PMID: 22829943 PMCID: PMC3400614 DOI: 10.1371/journal.pone.0041363] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/20/2012] [Indexed: 11/23/2022] Open
Abstract
In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69. Oxidative stress causes dimerization of apoflavodoxin (i.e., flavodoxin without cofactor), and leads to consecutive formation of sulfinate and sulfonate states of Cys69. Use of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reveals that Cys69 modification to a sulfenic acid is a transient intermediate during oxidation. Dithiothreitol converts sulfenic acid and disulfide into thiols, whereas the sulfinate and sulfonate forms of Cys69 are irreversible with respect to this reagent. A variable fraction of Cys69 in freshly isolated flavodoxin is in the sulfenic acid state, but neither oxidation to sulfinic and sulfonic acid nor formation of intermolecular disulfides is observed under oxidising conditions. Furthermore, flavodoxin does not react appreciably with NBD-Cl. Besides its primary role as redox-active moiety, binding of flavin leads to considerably improved stability against protein unfolding and to strong protection against irreversible oxidation and other covalent thiol modifications. Thus, cofactors can protect proteins against oxidation and modification.
Collapse
Affiliation(s)
- Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | | | - Robert H. H. van den Heuvel
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
10
|
Structural organization of WrbA in apo- and holoprotein crystals. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1288-98. [PMID: 19665595 DOI: 10.1016/j.bbapap.2009.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 11/23/2022]
Abstract
Two previously reported holoprotein crystal forms of the flavodoxin-like E. coli protein WrbA, diffracting to 2.6 and 2.0 A resolution, and new crystals of WrbA apoprotein diffracting to 1.85 A, are refined and analysed comparatively through the lens of flavodoxin structures. The results indicate that differences between apo- and holoWrbA crystal structures are manifested on many levels of protein organization as well as in the FMN-binding sites. Evaluation of the influence of crystal contacts by comparison of lattice packing reveals the protein's global response to FMN binding. Structural changes upon cofactor binding are compared with the monomeric flavodoxins. Topologically non-equivalent residues undergo remarkably similar local structural changes upon FMN binding to WrbA or to flavodoxin, despite differences in multimeric organization and residue types at the binding sites. Analysis of the three crystal structures described here, together with flavodoxin structures, rationalizes functional similarities and differences of the WrbAs relative to flavodoxins, leading to a new understanding of the defining features of WrbAs. The results suggest that WrbAs are not a remote and unusual branch of the flavodoxin family as previously thought but rather a central member with unifying structural features.
Collapse
|
11
|
Alagaratnam S, van Pouderoyen G, Pijning T, Dijkstra BW, Cavazzini D, Rossi GL, Van Dongen WMAM, van Mierlo CPM, van Berkel WJH, Canters GW. A crystallographic study of Cys69Ala flavodoxin II from Azotobacter vinelandii: structural determinants of redox potential. Protein Sci 2006; 14:2284-95. [PMID: 16131657 PMCID: PMC2253476 DOI: 10.1110/ps.051582605] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Flavodoxin II from Azotobacter vinelandii is a "long-chain" flavodoxin and has one of the lowest E1 midpoint potentials found within the flavodoxin family. To better understand the relationship between structural features and redox potentials, the oxidized form of the C69A mutant of this flavodoxin was crystallized and its three-dimensional structure determined to a resolution of 2.25 A by molecular replacement. Its overall fold is similar to that of other flavodoxins, with a central five-stranded parallel beta-sheet flanked on either side by alpha-helices. An eight-residue insertion, compared with other long-chain flavodoxins, forms a short 3(10) helix preceding the start of the alpha3 helix. The flavin mononucleotide (FMN) cofactor is flanked by a leucine on its re face instead of the more conserved tryptophan, resulting in a more solvent-accessible FMN binding site and stabilization of the hydroquinone (hq) state. In particular the absence of a hydrogen bond to the N5 atom of the oxidized FMN was identified, which destabilizes the ox form, as well as an exceptionally large patch of acidic residues in the vicinity of the FMN N1 atom, which destabilizes the hq form. It is also argued that the presence of a Gly at position 58 in the sequence stabilizes the semiquinone (sq) form, as a result, raising the E2 value in particular.
Collapse
|
12
|
Löhr F, Yalloway GN, Mayhew SG, Rüterjans H. Cofactor-Apoprotein Hydrogen Bonding in Oxidized and Fully Reduced Flavodoxin Monitored by Trans-Hydrogen-Bond Scalar Couplings. Chembiochem 2004; 5:1523-34. [PMID: 15515086 DOI: 10.1002/cbic.200400171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hydrogen bonding plays a key role in the tight binding of the FMN cofactor and the regulation of its redox properties in flavodoxins. Hydrogen bonding interactions can be directly observed in solution by multidimensional heteronuclear NMR spectroscopy through the scalar couplings between donor and acceptor nuclei. Here we report on the detection of intermolecular trans-hydrogen-bond couplings ((h)J) between the flavin ring system and the backbone of Desulfovibrio vulgaris flavodoxin in the oxidized and the two-electron reduced states. For this purpose, experiments are adapted from pulse sequences previously applied to determining (h)J coupling constants in nucleic acid-base pairs and proteins. The resulting (h2)J(N,N), (h4)J(N,N), (h3)J(C,N), and (h1)J(H,N) couplings involve the (15)N(1), (13)C(2), and (15)N(3) nuclei of the pyrimidine moiety of FMN, whereas no such interactions are detectable for (13)C(4) and (15)N(5). Several long-range (15)N-(15)N, (13)C-(15)N, and (1)H-(15)N J-coupling constants within the flavin are obtained as "by-products". The magnitudes of both (h)J and regular J couplings are found to be dependent on the redox state. In general, good correlations between (h)J coupling constants and donor-group (1)H chemical shifts and also crystallographic donor-acceptor distances are observed.
Collapse
Affiliation(s)
- Frank Löhr
- Institut für Biophysikalische Chemie, Zentrum für Biomolekulare Magnetische Resonanz, Johann Wolfgang Goethe-Universität, Marie Curie-Strasse 9, 60439 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
13
|
Champier L, Sibille N, Bersch B, Brutscher B, Blackledge M, Covès J. Reactivity, secondary structure, and molecular topology of the Escherichia coli sulfite reductase flavodoxin-like domain. Biochemistry 2002; 41:3770-80. [PMID: 11888295 DOI: 10.1021/bi016008i] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The flavodoxin-like domain, missing in the three-dimensional structure of the monomeric, simplified model of the Escherichia coli sulfite reductase flavoprotein component (SiR-FP), has now been expressed independently. This 168 amino acid protein was named SiR-FP18 with respect to its native molecular weight and represents the FMN-binding domain of SiR-FP. This simplified biological object has kept the main characteristics of its counterpart in the native protein. It could incorporate FMN exclusively and stabilize a neutral air-stable semiquinone radical. Both the radical and the fully reduced forms of SiR-FP18 were able to transfer their electrons to DCPIP or cytochrome c quantitatively. SiR-FP18 was able to form a highly stable complex with SiR-HP, the hemoprotein component of the sulfite reductase containing an iron-sulfur cluster coupled to a siroheme. In agreement with the postulated catalytic cycle of SiR-FP, only the fully reduced form of SiR-FP18 could transfer one electron to SiR-HP, the transferred electron being localized exclusively on the heme. As isolated SiR-FP18 has kept the main characteristics of the FMN-binding domain of the native protein, a structural analysis by NMR was performed in order to complete the partial structure obtained previously. Structural modeling was performed using sequence homologues, cytochrome P450 reductase (CPR; 29% identity) and bacterial cytochrome P450 (P450-BM3; 26% identity), as conformational templates. These sequences were anchored using common secondary structural elements identified from heteronuclear NMR data measured on the protein backbone. The resulting structural model was validated, and subsequently refined using residual (C(alpha)-C', N-H(N), and C'-H(N)) dipolar couplings measured in an anisotropic medium. The overall fold of SiR-FP18 is very similar to that of bacterial flavodoxins and of the flavodoxin-like domain in CPR or P450-BM3.
Collapse
Affiliation(s)
- Ludovic Champier
- Laboratoire de Chimie et Biochimie des Centres Rédox Biologiques, CEA-Grenoble, DBMS/CB, UMR 5047 CNRS-CEA-UJF, 17, Avenue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | | | | | | | | |
Collapse
|
14
|
Löhr F, Mayhew SG, Rüterjans H. Detection of Scalar Couplings Across NH···OP and OH···OP Hydrogen Bonds in a Flavoprotein. J Am Chem Soc 2000. [DOI: 10.1021/ja001345k] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frank Löhr
- Contribution from the Institut für Biophysikalische Chemie, Johann Wolfgang Goethe-Universität, Biozentrum N230, Marie Curie-Strasse 9, 60439 Frankfurt am Main, Germany, and Department of Biochemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen G. Mayhew
- Contribution from the Institut für Biophysikalische Chemie, Johann Wolfgang Goethe-Universität, Biozentrum N230, Marie Curie-Strasse 9, 60439 Frankfurt am Main, Germany, and Department of Biochemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Heinz Rüterjans
- Contribution from the Institut für Biophysikalische Chemie, Johann Wolfgang Goethe-Universität, Biozentrum N230, Marie Curie-Strasse 9, 60439 Frankfurt am Main, Germany, and Department of Biochemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
15
|
Steensma E, van Mierlo CP. Structural characterisation of apoflavodoxin shows that the location of the stable nucleus differs among proteins with a flavodoxin-like topology. J Mol Biol 1998; 282:653-66. [PMID: 9737928 DOI: 10.1006/jmbi.1998.2045] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural characteristics of Azotobacter vinelandii apoflavodoxin II have been determined using multidimensional NMR spectroscopy. Apoflavodoxin has a stable, well-ordered core but its flavin binding region is flexible. The local stability of apoflavodoxin was probed using hydrogen/deuterium exchange measurements. The existence of an apoflavodoxin equilibrium folding intermediate is inferred from the non-coincidence of CD and fluorescence unfolding curves obtained for the guanidinium hydrochloride induced unfolding of apoflavodoxin. We suggest that the structured part of the putative intermediate is composed of the elements of secondary structure which have the slowest exchanging amide protons in the native protein. These elements are strands beta1, beta3, beta4 and beta5a and helices alpha4 and alpha5. We propose that it is a general feature of flavodoxins that the stable nucleus resides in the C-terminal part of these proteins. The results on flavodoxin are compared with those on two sequentially unrelated proteins sharing the flavodoxin-like fold: Che Y and cutinase. It is shown that the stable nucleus is found in different parts of the flavodoxin-like topology.
Collapse
Affiliation(s)
- E Steensma
- Department of Biomolecular Sciences - Laboratory of Biochemistry, Wageningen Agricultural University, Dreijenlaan 3, Wageningen, NL-6703 HA, The Netherlands
| | | |
Collapse
|
16
|
Steensma E, Nijman MJ, Bollen YJ, de Jager PA, van den Berg WA, van Dongen WM, van Mierlo CP. Apparent local stability of the secondary structure of Azotobacter vinelandii holoflavodoxin II as probed by hydrogen exchange: implications for redox potential regulation and flavodoxin folding. Protein Sci 1998; 7:306-17. [PMID: 9521106 PMCID: PMC2143925 DOI: 10.1002/pro.5560070210] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As a first step to determine the folding pathway of a protein with an alpha/beta doubly wound topology, the 1H, 13C, and 15N backbone chemical shifts of Azotobacter vinelandii holoflavodoxin II (179 residues) have been determined using multidimensional NMR spectroscopy. Its secondary structure is shown to contain a five-stranded parallel beta-sheet (beta2-beta1-beta3-beta4-beta5) and five alpha-helices. Exchange rates for the individual amide protons of holoflavodoxin were determined using the hydrogen exchange method. The amide protons of 65 residues distributed throughout the structure of holoflavodoxin exchange slowly at pH* 6.2 [kex < 10(-5) s(-1)] and can be used as probes in future folding studies. Measured exchange rates relate to apparent local free energies for transient opening. We propose that the amide protons in the core of holoflavodoxin only exchange by global unfolding of the apo state of the protein. The results obtained are discussed with respect to their implications for flavodoxin folding and for modulation of the flavin redox potential by the apoprotein. We do not find any evidence that A. vinelandii holoflavodoxin II is divided into two subdomains based on its amide proton exchange rates, as opposed to what is found for the structurally but not sequentially homologous alpha/beta doubly wound protein Che Y.
Collapse
Affiliation(s)
- E Steensma
- Department of Biomolecular Sciences, Wageningen Agricultural University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|