1
|
Pei Y, Liu Y, Peng J, Pei Y, Zhang T, Miao P, Liu Y, Liu Y, Liu J, Yang Z, Li F, Wang Z. The DNA N6-adenine methylation target gene GhMAF1 promotes fiber initiation at the base of Gossypium ovules. THE NEW PHYTOLOGIST 2025; 246:1015-1031. [PMID: 40065494 DOI: 10.1111/nph.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/14/2025] [Indexed: 04/11/2025]
Abstract
DNA methylation consists of 5-methylcytosine and N6-methyl deoxyadenosine (6mA) and is crucial in plant development. However, its specific role and potential mechanism to initiate cotton fibers remain unclear. This study employed Oxford Nanopore Technologies (ONT) sequencing to analyze DNA methylation alterations in ZM24 and ZM24 fuzzless-lintless (ZM24fl) during fiber initiation. Our results indicated that DNA 6mA methylation exhibited the most remarkable difference among ovule samples at -2, 0, and 5 d post anthesis of ZM24 and ZM24fl. Subsequently, genes with significant changes in DNA 6mA methylation and transcription during fiber initiation were screened. We found that GhMAF1 displayed significant transcriptional upregulation and 6mA enrichment in its promoter, which could serve as a potential target for DNA 6mA in fiber initiation. Further, we knocked out GhMAF1 using CRISPR-Cas technology and demonstrated that GhMAF1 specifically promotes the initiation of fiber cells at the base of the ovule by mediating the downstream JAZ2/CPC-MML3/MML4 pathway. These findings unveil a novel spatial module of fiber cell initiation on the ovule surface that involves GhMAF1. Ultimately, this work provides significant knowledge for the regulatory network of DNA 6mA modification in fiber initiation to improve fiber yield and quality.
Collapse
Affiliation(s)
- Yanfei Pei
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Xinjiang Key Laboratory of Crop Gene Editing and Germplasm Innovation, Institute of Western Agricultural of CAAS, Changji, 831100, Xinjiang, China
- Hainan Seed Industry Laboratory, Sanya, 572024, China
| | - Yongming Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Jun Peng
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Yayue Pei
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Tianen Zhang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Pengfei Miao
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Yuanyuan Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Yang Liu
- Hainan Seed Industry Laboratory, Sanya, 572024, China
| | - Ji Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Xinjiang Key Laboratory of Crop Gene Editing and Germplasm Innovation, Institute of Western Agricultural of CAAS, Changji, 831100, Xinjiang, China
| | - Fuguang Li
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhi Wang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Xinjiang Key Laboratory of Crop Gene Editing and Germplasm Innovation, Institute of Western Agricultural of CAAS, Changji, 831100, Xinjiang, China
- Hainan Seed Industry Laboratory, Sanya, 572024, China
| |
Collapse
|
2
|
Jiménez-Ramírez IA, Pijeira-Fernández G, Moreno-Cálix DM, De-la-Peña C. Same modification, different location: the mythical role of N 6-adenine methylation in plant genomes. PLANTA 2022; 256:9. [PMID: 35696004 DOI: 10.1007/s00425-022-03926-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The present review summarizes recent advances in the understanding of 6mA in DNA as an emergent epigenetic mark with distinctive characteristics, discusses its importance in plant genomes, and highlights its chemical nature and functions. Adenine methylation is an epigenetic modification present in DNA (6mA) and RNA (m6A) that has a regulatory function in many cellular processes. This modification occurs through a reversible reaction that covalently binds a methyl group, usually at the N6 position of the purine ring. This modification carries biophysical properties that affect the stability of nucleic acids as well as their binding affinity with other molecules. DNA 6mA has been related to genome stability, gene expression, DNA replication, and repair mechanisms. Recent advances have shown that 6mA in plant genomes is related to development and stress response. In this review, we present recent advances in the understanding of 6mA in DNA as an emergent epigenetic mark with distinctive characteristics. We discuss the key elements of this modification, focusing mainly on its importance in plant genomes. Furthermore, we highlight its chemical nature and the regulatory effects that it exerts on gene expression and plant development. Finally, we emphasize the functions of 6mA in photosynthesis, stress, and flowering.
Collapse
Affiliation(s)
- Irma A Jiménez-Ramírez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Gema Pijeira-Fernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Delia M Moreno-Cálix
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Clelia De-la-Peña
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
3
|
Wang L, Dai W, Shi Y, Wang Y, Zhang C. Cloning and activity analysis of the highly expressed gene VviABCG20 promoter in seed and its activity is negatively regulated by the transcription factor VviDof14. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111152. [PMID: 35067313 DOI: 10.1016/j.plantsci.2021.111152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Half-size ATP binding cassette G (ABCG) transporters participate in the growth and development of plants by transporting substrates. The VviABCG20 gene is highly expressed in seed and plays an important role in seed development/abortion. However, little is known about the function of the VviABCG20 promoter (pVviABCG20) and its regulatory factors. In our study, we obtained pVviABCG20s from 15 seeded and seedless grape varieties and there were two types of 'a' and 'b' with 41 bp non-deletion or deletion, respectively. The pVviABCG20 activity was higher in seeds, siliques, flowers and roots of pVviABCG20-GUS Arabidopsis. The GUS activity analysis revealed that the activities of P4 (-586 bp) to P7 (-155 bp) were becoming increasingly weaker, and the P7 activity almost disappears compared with the pVviABCG20 (P0, -1604). Yeast one-hybrid and GUS activity analysis indicated that VviDof14 binds to the AAAG element in the P7' (-586 bp) fragment of the pVviABCG20 and regulated the activity negatively. The quantitative real-time PCR analysis suggested that the expression of VviDof14 in Thompson seedless seeds was higher than that in Pinot noir. Our study laid the foundation for further analysis of the functions of the pVviABCG20 and its regulator VviDof14 in grape seed development/abortion.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi, China
| | - Weina Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi, China
| | - Yuanyuan Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi, China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Liang Z, Riaz A, Chachar S, Ding Y, Du H, Gu X. Epigenetic Modifications of mRNA and DNA in Plants. MOLECULAR PLANT 2020; 13:14-30. [PMID: 31863849 DOI: 10.1016/j.molp.2019.12.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/22/2019] [Accepted: 12/05/2019] [Indexed: 05/21/2023]
Abstract
Advances in the detection and mapping of messenger RNA (mRNA) N6-methyladenosine (m6A) and 5-methylcytosine (m5C), and DNA N6-methyldeoxyadenosine (6mA) redefined our understanding of these modifications as additional tiers of epigenetic regulation. In plants, the most prevalent internal mRNA modifications, m6A and m5C, play crucial and dynamic roles in many processes, including embryo development, stem cell fate determination, trichome branching, leaf morphogenesis, floral transition, stress responses, fruit ripening, and root development. The newly identified and widespread epigenetic marker 6mA DNA methylation is associated with gene expression, plant development, and stress responses. Here, we review the latest research progress on mRNA and DNA epigenetic modifications, including the detection, dynamics, distribution, functions, regulatory proteins, and evolution, with a focus on m6A, m5C, and 6mA. We also provide some perspectives on future research of the newly identified and unknown epigenetic modifications of mRNA and DNA in plants.
Collapse
Affiliation(s)
- Zhe Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Adeel Riaz
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sadaruddin Chachar
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yike Ding
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Methylation content sensitive enzyme ddRAD (MCSeEd): a reference-free, whole genome profiling system to address cytosine/adenine methylation changes. Sci Rep 2019; 9:14864. [PMID: 31619715 PMCID: PMC6795852 DOI: 10.1038/s41598-019-51423-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
Methods for investigating DNA methylation nowadays either require a reference genome and high coverage, or investigate only CG methylation. Moreover, no large-scale analysis can be performed for N6-methyladenosine (6 mA) at an affordable price. Here we describe the methylation content sensitive enzyme double-digest restriction-site-associated DNA (ddRAD) technique (MCSeEd), a reduced-representation, reference-free, cost-effective approach for characterizing whole genome methylation patterns across different methylation contexts (e.g., CG, CHG, CHH, 6 mA). MCSeEd can also detect genetic variations among hundreds of samples. MCSeEd is based on parallel restrictions carried out by combinations of methylation insensitive and sensitive endonucleases, followed by next-generation sequencing. Moreover, we present a robust bioinformatic pipeline (available at https://bitbucket.org/capemaster/mcseed/src/master/ ) for differential methylation analysis combined with single nucleotide polymorphism calling without or with a reference genome.
Collapse
|
6
|
Zhang Q, Liang Z, Cui X, Ji C, Li Y, Zhang P, Liu J, Riaz A, Yao P, Liu M, Wang Y, Lu T, Yu H, Yang D, Zheng H, Gu X. N 6-Methyladenine DNA Methylation in Japonica and Indica Rice Genomes and Its Association with Gene Expression, Plant Development, and Stress Responses. MOLECULAR PLANT 2018; 11:1492-1508. [PMID: 30448535 DOI: 10.1016/j.molp.2018.11.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/03/2018] [Accepted: 11/11/2018] [Indexed: 05/23/2023]
Abstract
N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes, including the dicot model Arabidopsis thaliana. However, the conservation and divergence of 6mA distribution patterns and functions in plants remain elusive. Here we report high-quality 6mA methylomes at single-nucleotide resolution in rice based on substantially improved genome sequences of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Analysis of 6mA genomic distribution and its association with transcription suggest that 6mA distribution and function is rather conserved between rice and Arabidopsis. We found that 6mA levels are positively correlated with the expression of key stress-related genes, which may be responsible for the difference in stress tolerance between Nip and 93-11. Moreover, we showed that mutations in DDM1 cause defects in plant growth and decreased 6mA level. Our results reveal that 6mA is a conserved DNA modification that is positively associated with gene expression and contributes to key agronomic traits in plants.
Collapse
Affiliation(s)
- Qian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhe Liang
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Xuean Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Yun Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Pingxian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingrong Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Adeel Riaz
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pu Yao
- Biomarker Technologies, Beijing 101300, China
| | - Min Liu
- Biomarker Technologies, Beijing 101300, China
| | - Yunpeng Wang
- Institute of Clinical Medicine, University of Oslo, Oslo 0450, Norway
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Donglei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
DNA N-Adenine Methylation in Arabidopsis thaliana. Dev Cell 2018; 45:406-416.e3. [DOI: 10.1016/j.devcel.2018.03.012] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 01/09/2018] [Accepted: 03/15/2018] [Indexed: 01/11/2023]
|
8
|
Methylation-sensitive amplified polymorphism (MSAP) marker to investigate drought-stress response in Montepulciano and Sangiovese grape cultivars. Methods Mol Biol 2014. [PMID: 24478013 DOI: 10.1007/978-1-62703-773-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Methylation-sensitive amplified polymorphism (MSAP) is a technique developed for assessing the extent and pattern of cytosine methylation and has been applied to genomes of several species (Arabidopsis, grape, maize, tomato, and pepper). The technique relies on the use of isoschizomers that differ in their sensitivity to methylation.
Collapse
|
9
|
Analysis of DNA methylation in different maize tissues. J Genet Genomics 2009; 35:41-8. [PMID: 18222408 DOI: 10.1016/s1673-8527(08)60006-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/20/2007] [Accepted: 07/21/2007] [Indexed: 11/22/2022]
Abstract
DNA methylation plays an important role in gene expression regulation during biological development and tissue differentiation in plants. This study adopted methylation-sensitive Amplified fragment length polymorphism (AFLP) to compare the levels of DNA cytosine methylation at CCGG sites in tassel, bracteal leaf, and ear leaf from maize inbred lines, 18 White and 18 Red, respectively, and also examined specific methylation patterns of the three tissues. Significant differences in cytosine methylation level among the three tissues and the same changing tendency in two inbred lines were detected. Both MSAP (methylation sensitive amplification polymorphism) ratio and full methylation level were the highest in bracteal leaf, and the lowest in tassel. Meanwhile, different methylation levels were observed in the same tissue from the inbred lines, 18 White and 18 Red. Full methylation of internal cytosine was the dominant type in the maize genome. The differential methylation patterns in the three tissues were observed. In addition, sequencing of nine differentially methylated fragments and the subsequent blast search revealed that the cytosine methylated 5' -CCGG-3' sequences were distributed in repeating sequences, in the coding and noncoding regions. Southern hybridization was used to verify the methylation polymorphism. These results clearly demonstrated the power of the MSAP technique for large-scale DNA methylation detection in the maize genome, and the complexity of DNA methylation change during plant growth and development. The different methylation levels may be related to specific gene expression in various tissues.
Collapse
|
10
|
Abstract
Contrary to mammalian DNA, which is thought to contain only 5-methylcytosine (m5C), bacterial DNA contains two additional methylated bases, namely N6-methyladenine (m6A), and N4-methylcytosine (m4C). However, if the main function of m5C and m4C in bacteria is protection against restriction enzymes, the roles of m6A are multiple and include, for example, the regulation of virulence and the control of many bacterial DNA functions such as the replication, repair, expression and transposition of DNA. Interestingly, even if adenine methylation is usually considered a bacterial DNA feature, the presence of m6A has been found in protist and plant DNAs. Furthermore, indirect evidence suggests the presence of m6A in mammal DNA, raising the possibility that this base has remained undetected due to the low sensitivity of the analytical methods used. This highlights the importance of considering m6A as the sixth element of DNA.
Collapse
Affiliation(s)
- David Ratel
- Neurosciences précliniques
INSERM : U318Université Joseph Fourier - Grenoble ICHU Grenoble 38043 Grenoble Cedex 9,FR
| | | | - François Berger
- Neurosciences précliniques
INSERM : U318Université Joseph Fourier - Grenoble ICHU Grenoble 38043 Grenoble Cedex 9,FR
| | - Didier Wion
- Neurosciences précliniques
INSERM : U318Université Joseph Fourier - Grenoble ICHU Grenoble 38043 Grenoble Cedex 9,FR
- * Correspondence should be adressed to: Didier Wion
| |
Collapse
|
11
|
Lu G, Wu X, Chen B, Gao G, Xu K, Li X. Detection of DNA methylation changes during seed germination in rapeseed (Brassica napus). ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-005-1191-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
|
13
|
Chakrabarty D, Yu K, Paek K. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). PLANT SCIENCE 2003; 165:61-68. [DOI: 10.1016/s0168-9452(03)00127-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
14
|
Smulders MJ, Rus-Kortekaas W, Vosman B. Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 91:1257-1264. [PMID: 24170055 DOI: 10.1007/bf00220938] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/1995] [Accepted: 06/23/1995] [Indexed: 06/02/2023]
Abstract
The propagation of plants through tissue culture can induce a variety of genetic and epigenetic changes. Variation in DNA methylation has been proposed as a mechanism that may explain at least a part of these changes. In the present study, the methylation of tomato callus DNA was compared with that of leaf DNA, from control or regenerated plants, at MspI/HpaII sites around five middle-repetitive sequences. Although the methylation of the internal cytosine in the recognition sequence CCGG varied from zero to nearly full methylation, depending on the probe used, no differences were found between callus and leaf DNA. For the external cytosine, small differences were revealed between leaf and callus DNA with two probes, but no polymorphisms were detected among DNA samples of calli or DNA samples of leaves of regenerated plants. When callus DNA cut with HindIII was studied with one of the probes, H9D9, most of the signal was found in high-molecular-weight DNA, as opposed to control leaf DNA where almost all the signal was in a fragment of 530 bp. Also, an extra fragment of 630 bp was found in the callus DNA that was not present in control leaf DNA. Among leaves of plants regenerated from tissue culture, the 630-bp fragment was found in 10 of 68 regenerated plants. This 630-bp fragment was present among progeny of only 4 of these 10 plants after selfing, i.e. it was partly inherited. In these cases, the fragment was not found in all progeny plants, indicating heterozygosity of the regenerated plants. The data are interpreted as indicating that a HindIII site becomes methylated in callus tissue, and that some of this methylation persists in regenerated plants and is partly transmitted to their progeny.
Collapse
Affiliation(s)
- M J Smulders
- Centre for Plant Breeding and Reproduction Research (CPRO-DLO), P.O. Box 16, NL-6700, AA, Wageningen, The Netherlands
| | | | | |
Collapse
|
15
|
Arnholdt-Schmitt B, Herterich S, Neumann KH. Physiological aspects of genome variability in tissue culture. I. Growth phase-dependent differential DNA methylation of the carrot genome (Daucus carota L.) during primary culture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 91:809-815. [PMID: 24169921 DOI: 10.1007/bf00220964] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/1995] [Accepted: 04/21/1995] [Indexed: 06/02/2023]
Abstract
Investigations were performed on growth phase-dependent EcoRII site-specific DNA methylation of the carrot genome during primary culture to elucidate physiological aspects of genome DNA variability in tissue culture. While DNA methylation of the root cambium and the secondary phloem and petioles of carrot leaves were strikingly different, the methylation level of the secondary phloem seemed to be independent of cultivar origin, the age of the plants and the extent of secondary root growth. As was shown earlier a change in the differentiated state of the secondary phloem by tissue culture leads to changes in genome modification. Whereas de novo methylation was observed during the first 2 weeks of growth initiation, the results presented demonstrate genome de-methylation during the transition to stationary growth indicating differential εnome methylation during different phases of culture. The presence of kinetin in the nutrient medium of the primary culture was found to be antagonistic to changes in genome modification in general. De novo methylation and subsequent de-methylation of the carrot genome are discussed as gross changes obviously essential to molecular genome differentiation during tissue culture.
Collapse
Affiliation(s)
- B Arnholdt-Schmitt
- Institut für Pflanzenernährung, Abteilung Gewebekultur, Justus-Liebig-Universität Giessen, Südanlage 6, D-35390, Giessen, Germany
| | | | | |
Collapse
|
16
|
Mawal Y, Lagu M, Moon E, Chang S, Chung MC, Wu HK, Gupta V, Ranjekar P, Wu R. BamHI and HindIII repetitive DNA families in the rice genome. Genome 1995; 38:191-200. [PMID: 7774793 DOI: 10.1139/g95-024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this paper we describe a novel method of cloning representative members of different repetitive DNA families based on the screening of a rice (Oryza sativa) genomic library using DNA from different C0t fractions as probes. Two genomic clones, which represent two different repetitive DNA families in rice, were isolated by this method and have been characterized. Their nucleotide sequences, copy numbers, distributions in major rice genome types, methylation patterns, and chromosomal localizations were determined.
Collapse
Affiliation(s)
- Y Mawal
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mitra A, Que Q. Ectopic expression of a viral adenine methyltransferase gene in tobacco. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:244-9. [PMID: 8086473 DOI: 10.1016/0167-4781(94)90282-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Plant genomes contain both methylated adenine and cytosine residues although the roles of these methylations are not well understood. A chlorella virus adenine methyltransferase gene under the control of cauliflower mosaic virus 35S promoter in a binary plant transformation vector was expressed both in transgenic tobacco plants and transformed tobacco calli. The transgenic plants as well as transformed calli produced functional adenine methyltransferase enzyme, but the level of expression was higher in tobacco calli. A transgenic tobacco cell line that expressed the methyltransferase enzyme and carried an Arabidopsis cab3 gene containing a single target site for the adenine methyltransferase enzyme showed that the adenine residue was not methylated. HPLC analysis of genomic DNA from transgenic calli also showed no detectable levels of methylated adenine residues.
Collapse
Affiliation(s)
- A Mitra
- Department of Plant Pathology, University of Nebraska, Lincoln 68583-0722
| | | |
Collapse
|
18
|
Renckens S, De Greve H, Van Montagu M, Hernalsteens JP. Petunia plants escape from negative selection against a transgene by silencing the foreign DNA via methylation. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:53-64. [PMID: 1376407 DOI: 10.1007/bf00587561] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transgenic Petunia hybrida clones harbouring the T-DNA gene 2 of Agrobacterium tumefaciens were used to test a strategy for the trapping of plant transposable elements. In the Petunia line used, floral variegation is due to the presence of the non-autonomous transposable element dTph1 at the An1 locus. The gene 2 product converts the auxin precursor indole-3-acetamide and its analogue 1-naphthalene acetamide into the active auxins indole-3-acetic acid and 1-naphthalene acetic acid. Plant cells that express gene 2 can use a low concentration of the precursors as auxins and become sensitive to the toxicity of high concentrations of these compounds. By selecting protoplast-derived microcalli or seedlings able to grow on medium with high precursor concentrations, variant plants were obtained in which gene 2 was no longer expressed. Southern analysis, using gene 2-specific probes, revealed that in one variant the T-DNA was deleted. For 30 other variants no alteration in gene 2 structure was observed, indicating that transposable element insertion was not responsible for the inactivation of gene 2. Analysis with restriction enzymes allowing discrimination between methylated or non-methylated DNA sequences showed that the inactivated gene 2 sequences were methylated. Addition of the in vivo methylation inhibitor 5-azacytidine to the medium led to reactivation of gene 2 expression in some of the variants. These observations demonstrated that reversible DNA methylation was the main cause of silencing of gene 2 in this system.
Collapse
Affiliation(s)
- S Renckens
- Laboratorium voor Genetische Virologie, Vrije Universiteit Brussel, St-Genesius-Rode, Belgium
| | | | | | | |
Collapse
|