1
|
Ilangumaran G, Schwinghamer TD, Smith DL. Rhizobacteria From Root Nodules of an Indigenous Legume Enhance Salinity Stress Tolerance in Soybean. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.617978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Soybean is the most widely grown legume worldwide, but it is a glycophyte and salinity stress can decrease its yield potential up to 50%. Plant growth promoting rhizobacteria (PGPR) are known to enhance growth and induce tolerance to abiotic stresses including salinity. The aim of this study was to isolate such PGPR from the root nodules of Amphicarpaea bracteata, a North American relative of soybean. Isolated strains were identified, and 15 strains were screened for potential utilization as PGPR of soybean through a series of greenhouse trials. Four isolates that greatly improved shoot and root growth were further selected and screened under a range of salt concentrations. Two of the most promising strains, Rhizobium sp. SL42 and Hydrogenophaga sp. SL48 were ascertained to exert the greatest beneficial effects on soybean growth and salinity tolerance. They were co-inoculated with Bradyrhizobium japonicum 532C (Bj) and the plants were grown up to the harvest stage. The treatment of Bj+SL42 resulted in higher shoot biomass than the control, 18% at the vegetative stage, 16% at flowering, 7.5% at pod-filling, and 4.6% at harvest and seed weight was increased by 4.3% under salt stress (ECe = 7.4 ds/m). Grain yield was raised under optimal conditions by 7.4 and 8.1% with treatments Bj+SL48 and Bj+SL42+SL48, respectively. Nitrogen assimilation and shoot K+/Na+ ratio were also higher in the co-inoculation treatments. This study suggested that inoculation with bacteria from an indigenous legume can induce stress tolerance, improve growth and yield to support sustainability, and encourage ecological adaptability of soybean.
Collapse
|
2
|
|
3
|
Tang J, Bromfield ESP, Rodrigue N, Cloutier S, Tambong JT. Microevolution of symbiotic Bradyrhizobium populations associated with soybeans in east North America. Ecol Evol 2012; 2:2943-61. [PMID: 23301163 PMCID: PMC3538991 DOI: 10.1002/ece3.404] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022] Open
Abstract
Microevolution and origins of Bradyrhizobium populations associated with soybeans at two field sites (A and B, 280 km apart in Canada) with contrasting histories of inoculation was investigated using probabilistic analyses of six core (housekeeping) gene sequences. These analyses supported division of 220 isolates in five lineages corresponding either to B. japonicum groups 1 and 1a or to one of three novel lineages within the genus Bradyrhizobium. None of the isolates from site A and about 20% from site B (the only site with a recent inoculation history) were attributed to inoculation sources. The data suggest that most isolates were of indigenous origin based on sequence analysis of 148 isolates of soybean-nodulating bacteria from native legumes (Amphicarpaea bracteata and Desmodium canadense). Isolates from D. canadense clustered with B. japonicum group 1, whereas those from A. bracteata were placed in two novel lineages encountered at soybean field sites. One of these novel lineages predominated at soybean sites and exhibited a significant clonal expansion likely reflecting selection by the plant host. Homologous recombination events detected in the 35 sequence types from soybean sites had an effect on genetic diversification that was approximately equal to mutation. Interlineage transfer of core genes was infrequent and mostly attributable to gyrB that had a history of frequent recombination. Symbiotic gene sequences (nodC and nifH) of isolates from soybean sites and native legumes clustered in two lineages corresponding to B. japonicum and B. elkani with the inheritance of these genes appearing predominantly by vertical transmission. The data suggest that soybean-nodulating bacteria associated with native legumes represent a novel source of ecologically adapted bacteria for soybean inoculation.
Collapse
Affiliation(s)
- Jie Tang
- Agriculture and Agri-Food Canada 960 Carling Ave, Ottawa, Ontario, Canada, K1A 0C6
| | | | | | | | | |
Collapse
|
4
|
Haplotype Analysis and Linkage Disequilibrium at Five Loci in Eragrostis tef. G3-GENES GENOMES GENETICS 2012; 2:407-19. [PMID: 22413094 PMCID: PMC3291510 DOI: 10.1534/g3.111.001511] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/20/2012] [Indexed: 01/08/2023]
Abstract
Eragrostis tef (Zucc.), a member of the Chloridoideae subfamily of grasses, is one of the most important food crops in Ethiopia. Lodging is the most important production problem in tef. The rht1 and sd1 dwarfing genes have been useful for improving lodging resistance in wheat and rice, respectively, in what has been known as the “Green Revolution.” All homologs of rht1 and sd1 were cloned and sequenced from 31 tef accessions collected from across Ethiopia. The allotetraploid tef genome was found to carry two rht1 homologs. From sequence variation between these two putative homologs, an approximate ancestral divergence date of 6.4 million years ago was calculated for the two genomes within tef. Three sd1 homologs were identified in tef, with unknown orthologous/paralogous relationships. The genetic diversity in the 31 studied accessions was organized into a relatively small number of haplotypes (2−4) for four of these genes, whereas one rht1 homeologue exhibited 10 haplotypes. A low level of nucleotide diversity was observed at all loci. Linkage disequilibrium analysis demonstrated strong linkage disequilibrium, extending the length of the five genes investigated (2−4 kb), with no significant decline. There was no significant correlation between haplotypes of any of these genes and their recorded site of origin.
Collapse
|
5
|
Li YH, Li W, Zhang C, Yang L, Chang RZ, Gaut BS, Qiu LJ. Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. THE NEW PHYTOLOGIST 2010; 188:242-53. [PMID: 20618914 DOI: 10.1111/j.1469-8137.2010.03344.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
• The study of genetic diversity between a crop and its wild relatives may yield fundamental insights into evolutionary history and the process of domestication. • In this study, we genotyped a sample of 303 accessions of domesticated soybean (Glycine max) and its wild progenitor Glycine soja with 99 microsatellite markers and 554 single-nucleotide polymorphism (SNP) markers. • The simple sequence repeat (SSR) loci averaged 21.5 alleles per locus and overall Nei's gene diversity of 0.77. The SNPs had substantially lower genetic diversity (0.35) than SSRs. A SSR analyses indicated that G. soja exhibited higher diversity than G. max, but SNPs provided a slightly different snapshot of diversity between the two taxa. For both marker types, the primary division of genetic diversity was between the wild and domesticated accessions. Within taxa, G. max consisted of four geographic regions in China. G. soja formed six subgroups. Genealogical analyses indicated that cultivated soybean tended to form a monophyletic clade with respect to G. soja. • G. soja and G. max represent distinct germplasm pools. Limited evidence of admixture was discovered between these two species. Overall, our analyses are consistent with the origin of G. max from regions along the Yellow River of China.
Collapse
Affiliation(s)
- Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Hempel K, Peakall R. Cross-species amplification from crop soybean Glycine max provides informative microsatellite markers for the study of inbreeding wild relatives. Genome 2003; 46:382-93. [PMID: 12834054 DOI: 10.1139/g03-013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of microsatellite markers through transfer of primers from related species (cross-species amplification) remains a little-explored alternative to the de novo method in plants. In this study of 100 microsatellite loci from Glycine max, we examined two aspects of primer transfer. First, we tested if source locus properties can predict primer transfer and polymorphism in Glycine cyrtoloba and Glycine clandestina. We transferred 23 primers to G. cyrtoloba and 42 to G. clandestina, with 19 loci polymorphic within G. clandestina. However, we could not predict transfer or polymorphism from the source locus properties. Second, we evaluated the subset of 11 polymorphic loci for study in G. clandestina populations representing two local morphotypes. All loci were informative within populations (population mean He +/- SE = 0.58 +/- 0.04). We directly sequenced 28 alleles at 4 representative loci. The allelic patterns and sequencing results established that 8 of 11 loci were typical microsatellites, confirming the utility of primer transfer as an alternative to de novo development. Additionally, we found that morphotypic differentiation between populations was paralleled by changes in polymorphism level at six loci and size homoplasy at one locus. We interpret these patterns as being a product of selfing in G. clandestina. Our results demonstrate the value of allele sequence knowledge for the most effective use of microsatellites.
Collapse
Affiliation(s)
- K Hempel
- School of Botany and Zoology, Building 116, Australian National University, Acton, ACT 0200, Australia.
| | | |
Collapse
|
7
|
Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB. Single-nucleotide polymorphisms in soybean. Genetics 2003; 163:1123-34. [PMID: 12663549 PMCID: PMC1462490 DOI: 10.1093/genetics/163.3.1123] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) provide an abundant source of DNA polymorphisms in a number of eukaryotic species. Information on the frequency, nature, and distribution of SNPs in plant genomes is limited. Thus, our objectives were (1) to determine SNP frequency in coding and noncoding soybean (Glycine max L. Merr.) DNA sequence amplified from genomic DNA using PCR primers designed to complete genes, cDNAs, and random genomic sequence; (2) to characterize haplotype variation in these sequences; and (3) to provide initial estimates of linkage disequilibrium (LD) in soybean. Approximately 28.7 kbp of coding sequence, 37.9 kbp of noncoding perigenic DNA, and 9.7 kbp of random noncoding genomic DNA were sequenced in each of 25 diverse soybean genotypes. Over the >76 kbp, mean nucleotide diversity expressed as Watterson's theta was 0.00097. Nucleotide diversity was 0.00053 and 0.00111 in coding and in noncoding perigenic DNA, respectively, lower than estimates in the autogamous model species Arabidopsis thaliana. Haplotype analysis of SNP-containing fragments revealed a deficiency of haplotypes vs. the number that would be anticipated at linkage equilibrium. In 49 fragments with three or more SNPs, five haplotypes were present in one fragment while four or less were present in the remaining 48, thereby supporting the suggestion of relatively limited genetic variation in cultivated soybean. Squared allele-frequency correlations (r(2)) among haplotypes at 54 loci with two or more SNPs indicated low genome-wide LD. The low level of LD and the limited haplotype diversity suggested that the genome of any given soybean accession is a mosaic of three or four haplotypes. To facilitate SNP discovery and the development of a transcript map, subsets of four to six diverse genotypes, whose sequence analysis would permit the discovery of at least 75% of all SNPs present in the 25 genotypes as well as 90% of the common (frequency >0.10) SNPs, were identified.
Collapse
Affiliation(s)
- Y L Zhu
- Soybean Genomics and Improvement Laboratory, US Department of Agriculture-Agricultural Research Service, Beltsville, Maryland 20705, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF. The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. AMERICAN JOURNAL OF BOTANY 1998; 85:1301-1315. [PMID: 21685016 DOI: 10.2307/2446640] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phylogenetic resolution is often low within groups of recently diverged taxa due to a paucity of phylogenetically informative characters. We tested the relative utility of seven noncoding cpDNA regions and a pair of homoeologous nuclear genes for resolving recent divergences, using tetraploid cottons (Gossypium) as a model system. The five tetraploid species of Gossypium are a monophyletic assemblage derived from an allopolyploidization event that probably occurred within the last 0.5-2 million years. Previous analysis of cpDNA restriction site data provided only partial resolution within this clade despite a large number of enzymes employed. We sequenced three cpDNA introns (rpl16, rpoC1, ndhA) and four cpDNA spacers (accD-psaI, trnL-trnF, trnT-trnL, atpB-rbcL) for a total of over 7 kb of sequence per taxon, yet obtained only four informative nucleotide substitutions (0.05%) resulting in incomplete phylogenetic resolution. In addition, we sequenced a 1.65-kb region of a homoeologous pair of nuclear-encoded alcohol dehydrogenase (Adh) genes. In contrast with the cpDNA sequence data, the Adh homoeologues yielded 25 informative characters (0.76%) and provided a robust and completely resolved topology that is concordant with previous cladistic and phenetic analyses. The enhanced resolution obtained using the nuclear genes reflects an approximately three- to sixfold increase in nucleotide substitution rate relative to the plastome spacers and introns.
Collapse
Affiliation(s)
- R L Small
- Department of Botany, Bessey Hall, Iowa State University, Ames, Iowa 50011
| | | | | | | | | |
Collapse
|
9
|
Morgante M, Jurman I, Shi L, Zhu T, Keim P, Rafalski JA. The STR120 satellite DNA of soybean: organization, evolution and chromosomal specificity. Chromosome Res 1997; 5:363-73. [PMID: 9364938 DOI: 10.1023/a:1018492208247] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A highly repeated DNA sequence family, STR120, with tandemly arranged repetitive units (monomers) of approximately 120bp, has been identified in soybean [Glycine max (L.) Merr.]. Five related clones showing tandem repeats of a 120-bp-long monomer were isolated from a soybean genomic library. Results of Southern blotting experiments using three of the clones as probes onto genomic DNA digested with different restriction enzymes were in agreement with a tandem arrangement of these sequences in the genome. A total of 12 monomers were sequenced, showing considerable sequence heterogeneity. A consensus sequence of 126 bp was obtained that exhibits an average similarity of 81% to the sequenced units. In three of the clones identified, neighbouring units are significantly more similar to each other than to units from different clones; in the remaining two clones, however, similarity between the two units observed is low (70%), while the overall similarity between the two clones is high (95%). This indicates that in these cases the repetitive unit may be the dimer rather than the monomer. Based on the presence of direct repeats within each monomer, we suggest that the 120-bp monomer may itself have evolved by duplication of an ancestral 60-bp unit. The STR120 family distribution is limited to annual soybeans and is not found, at least at high-copy number, in related perennial soybeans or other members of the tribe Phaseolae. Fluorescence in situ hybridization (FISH) to metaphase chromosomes using four of the clones as probes shows that the number of chromosomal locations differs depending on the stringency conditions and goes from two to eight when the stringency is progressively lowered. The estimated copy number for one of the clones is from 5000 to 10000, but this may just represent a lower boundary for the whole family in consideration of the high sequence divergence observed within the family. FISH and sequence analysis therefore indicate that different subfamilies as well as higher-order repeat units are present in the STR120 family, very much like those in primate alpha satellite DNA, and that some of the subfamilies seem to exhibit divergence on a chromosomal basis.
Collapse
Affiliation(s)
- M Morgante
- Du Pont Agricultural Products, Biotechnology Research, Experimental Station, Wilmington, DE 19880-0402, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Vahedian M, Shi L, Zhu T, Okimoto R, Danna K, Keim P. Genomic organization and evolution of the soybean SB92 satellite sequence. PLANT MOLECULAR BIOLOGY 1995; 29:857-62. [PMID: 8541510 DOI: 10.1007/bf00041174] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Repetitive DNA sequences comprise a large percentage of plant genomes, and their characterization provides information about both species and genome evolution. We have isolated a recombinant clone containing a highly repeated DNA element (SB92) that is homologous to ca. 0.9% of the soybean genome or about 10(5) copies. This repeated sequence is tandemly arranged and is found in four or five major genomic locations. FISH analysis of metaphase chromosomes suggests that two of these locations are centromeric. We have determined the sequence of two cloned repeats and performed genomic sequencing to obtain a consensus sequence. The consensus repeat size was 92 bp and exhibited an average of 10% nucleotide substitution relative to the two cloned repeats. This high level of sequence diversity suggests an ancient origin but is inconsistent with the limited phylogenetic distribution of SB92, which is found at high copy number only in the annual soybeans. It therefore seems likely that this sequence is undergoing very rapid evolution.
Collapse
Affiliation(s)
- M Vahedian
- Department of Biological Sciences, Northern Arizona University 86011-5640, USA
| | | | | | | | | | | |
Collapse
|