1
|
Bala A, Roy A, Das A, Chakraborti D, Das S. Development of selectable marker free, insect resistant, transgenic mustard (Brassica juncea) plants using Cre/lox mediated recombination. BMC Biotechnol 2013; 13:88. [PMID: 24144281 PMCID: PMC3819271 DOI: 10.1186/1472-6750-13-88] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/08/2013] [Indexed: 01/12/2023] Open
Abstract
Background Antibiotic/ herbicide resistant marker genes have been proven to be very useful in plant transformation for the initial selection of desired transgenic events. However, presence of these genes in the genetically modified crops may render the crop less acceptable to the consumers. Among several different approaches, the effectiveness of Cre/lox mediated recombination strategy for selectable marker gene (SMG) elimination has previously been demonstrated by different groups in several plants including Brassica. In the present study exploiting Cre/lox mediated recombination strategy, attempt has been made for selectable marker gene elimination from Allium sativum leaf agglutinin (ASAL) expressing Brassica plants with hemipteran insect resistant phenotype. Results Allium sativum leaf agglutinin (ASAL) linked with lox flanked hygromycin resistant (hpt) gene was introduced in mustard. Cre recombinase gene cassette was also integrated in separate event. A Cre/lox mediated recombination using crossing strategy was adopted to remove the hpt gene from the subsequent generation of selected hybrid events. Reciprocal crosses were made between T1ASAL-lox-hpt-lox and cre-bar plants. Marker gene elimination was confirmed in the resulting F1 hybrid progenies by PCR analysis, using hpt, cre and ASAL specific primers followed by Southern hybridization. In marker free plants, expression of ASAL was also confirmed by western blotting and ELISA analysis. Retention of functionality of expressed ASAL was investigated by agglutination assay using rabbit erythrocytes. Expressed ASAL was also found to be thermo-sensitive. In planta insect bioassay on F1 hybrid progenies exhibited detrimental effect on the performance of devastating target pest, Lipaphis erysimi. The F1 hybrid hpt negative, ASAL positive plants were allowed to self- fertilize to obtain F2 progeny plants. In some of these plants cre gene was found to be segregated out of the ASAL gene by genetic segregation yielding completely marker free plants. Conclusions The present study establishes the efficient expression of the newly introduced insect resistant ASAL gene even after Cre/lox mediated recombination resulting in elimination of selectable marker gene.
Collapse
Affiliation(s)
| | | | | | | | - Sampa Das
- Division of Plant Biology, Bose Institute, P1/12, C, I, T Scheme VIIM, Kolkata 700054, WB, India.
| |
Collapse
|
2
|
Improved FLP Recombinase, FLPe, Efficiently Removes Marker Gene from Transgene Locus Developed by Cre–lox Mediated Site-Specific Gene Integration in Rice. Mol Biotechnol 2011; 49:82-9. [DOI: 10.1007/s12033-011-9381-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Sengupta S, Chakraborti D, Mondal HA, Das S. Selectable antibiotic resistance marker gene-free transgenic rice harbouring the garlic leaf lectin gene exhibits resistance to sap-sucking planthoppers. PLANT CELL REPORTS 2010; 29:261-271. [PMID: 20094886 DOI: 10.1007/s00299-010-0819-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/05/2010] [Accepted: 01/08/2010] [Indexed: 05/28/2023]
Abstract
Rice, the major food crop of world is severely affected by homopteran sucking pests. We introduced coding sequence of Allium sativum leaf agglutinin, ASAL, in rice cultivar IR64 to develop sustainable resistance against sap-sucking planthoppers as well as eliminated the selectable antibiotic-resistant marker gene hygromycin phosphotransferase (hpt) exploiting cre/lox site-specific recombination system. An expression vector was constructed containing the coding sequence of ASAL, a potent controlling agent against green leafhoppers (GLH, Nephotettix virescens) and brown planthopper (BPH, Nilaparvata lugens). The selectable marker (hpt) gene cassette was cloned within two lox sites of the same vector. Alongside, another vector was developed with chimeric cre recombinase gene cassette. Reciprocal crosses were performed between three single-copy T(0) plants with ASAL- lox-hpt-lox T-DNA and three single-copy T(0) plants with cre-bar T-DNA. Marker gene excisions were detected in T(1) hybrids through hygromycin sensitivity assay. Molecular analysis of T(1) plants exhibited 27.4% recombination efficiency. T(2) progenies of L03C04(1) hybrid parent showed 25% cre negative ASAL-expressing plants. Northern blot, western blot and ELISA showed significant level of ASAL expression in five marker-free T(2) progeny plants. In planta bioassay of GLH and BPH performed on these T(2) progenies exhibited radical reduction in survivability and fecundity compared with the untransformed control plants.
Collapse
Affiliation(s)
- Subhadipa Sengupta
- Plant Molecular and Cellular Genetics, Bose Institute, Centenary Campus, P1/12 CIT Scheme VII M, Kankurgachi, Kolkata, 700054, India
| | | | | | | |
Collapse
|
4
|
Chakraborti D, Sarkar A, Mondal HA, Schuermann D, Hohn B, Sarmah BK, Das S. Cre/lox system to develop selectable marker free transgenic tobacco plants conferring resistance against sap sucking homopteran insect. PLANT CELL REPORTS 2008; 27:1623-33. [PMID: 18663453 DOI: 10.1007/s00299-008-0585-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 06/20/2008] [Accepted: 07/08/2008] [Indexed: 05/26/2023]
Abstract
A binary expression vector was constructed containing the insecticidal gene Allium sativum leaf agglutinin (ASAL), and a selectable nptII marker gene cassette, flanked by lox sites. Similarly, another binary vector was developed with the chimeric cre gene construct. Transformed tobacco plants were generated with these two independent vectors. Each of the T(0) lox plants was crossed with T(0) Cre plants. PCR analyses followed by the sequencing of the target T-DNA part of the hybrid T(1) plants demonstrated the excision of the nptII gene in highly precised manner in certain percentage of the T(1) hybrid lines. The frequency of such marker gene excision was calculated to be 19.2% in the hybrids. Marker free plants were able to express ASAL efficiently and reduce the survivability of Myzus persiceae, the deadly pest of tobacco significantly, compared to the control tobacco plants. Results of PCR and Southern blot analyses of some of the T(2) plants detected the absence of cre as well as nptII genes. Thus, the crossing strategy involving Cre/lox system for the excision of marker genes appears to be very effective and easy to execute. Documentation of such marker excision phenomenon in the transgenic plants expressing the important insecticidal protein for the first time has a great significance from agricultural and biotechnological points of view.
Collapse
Affiliation(s)
- Dipankar Chakraborti
- Plant Molecular and Cellular Genetics, Bose Institute, P1/12 C.I.T. Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | | | | | | | | | | | | |
Collapse
|
5
|
Bai X, Wang Q, Chu C. Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic Res 2008; 17:1035-43. [DOI: 10.1007/s11248-008-9182-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
|
6
|
Hu Q, Nelson K, Luo H. FLP-mediated site-specific recombination for genome modification in turfgrass. Biotechnol Lett 2006; 28:1793-804. [PMID: 16912917 DOI: 10.1007/s10529-006-9162-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 07/10/2006] [Indexed: 11/24/2022]
Abstract
To develop molecular strategies for gene containment in genetically modified (GM) turfgrass, we have studied the feasibility of using the FLP/FRT site-specific DNA recombination system from yeast for controlled genome modification in turfgrass. Suspension cell cultures of creeping bentgrass (Agrostis stolonifera L.) and Kentucky bluegrass (Poa pratensis) were co-transformed with a FLP recombinase expression vector and a recombination-reporter test plasmid containing beta-glucuronidase (gusA) gene which was separated from the maize ubiquitin (ubi) promoter by an FRT-flanked blocking DNA sequence to prevent its transcription. GUS activity was observed in co-transformed cells, in which molecular analyses indicated that FLP-mediated excision of the blocking sequence had brought into proximity the upstream promoter and the downstream reporter gene, resulting in GUS expression. Functional evaluation of the FLP/FRT system using transgenic creeping bentgrass stably expressing FLP recombinase confirmed the observation in suspension cell culture. Our results indicate that FLP/FRT system is a useful tool for genetic manipulation of turfgrass, pointing to the great potential of exploiting the system to develop molecular strategies for transgene containment in perennials.
Collapse
Affiliation(s)
- Qian Hu
- Department of Genetics, Biochemistry and Life Science Studies, Clemson University, 100 Jordan Hall, Clemson, SC 29634, USA
| | | | | |
Collapse
|
7
|
Radhakrishnan P, Srivastava V. Utility of the FLP-FRT recombination system for genetic manipulation of rice. PLANT CELL REPORTS 2005; 23:721-726. [PMID: 15480685 DOI: 10.1007/s00299-004-0876-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 07/12/2004] [Accepted: 08/16/2004] [Indexed: 05/24/2023]
Abstract
To develop an FLP-FRT recombination system- (derived from 2 mu plasmid of Saccharomyces cerevisiae) based marker gene removal application for rice, we introduced the gene for FLP recombinase, under the control of the maize ubiquitin-1 promoter, into the rice genome. FLP activity was monitored in callus and regenerated plants by an assay based on the deletion of the FRT-flanked DNA fragment, leading to the activation of the beta-glucuronidase gene. FLP activity was detected both in the callus and leaves of some of the transgenic lines. Based on our comparison of the recombination efficiency of the FLP-FRT system expressed in the transgenic lines with that of the widely used Cre-lox system (derived from bacteriophage P1), we suggest that the FLP-FRT system is a useful tool for the genetic manipulation of rice.
Collapse
Affiliation(s)
- Parthiban Radhakrishnan
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA.
| | | |
Collapse
|
8
|
Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S. The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci U S A 2004; 101:886-90. [PMID: 14715897 PMCID: PMC321776 DOI: 10.1073/pnas.0304808101] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Indexed: 11/18/2022] Open
Abstract
The Vf gene from the wild species Malus floribunda 821 is the most studied apple scab resistance gene. Several molecular markers mapping around this gene were the starting point for a positional cloning project. The analysis of the bacterial artificial chromosome clones spanning the Vf region led to the identification of a cluster of genes homologous to the Cladosporium fulvum resistance gene family of tomato. One of these genes, HcrVf2 (homologue of the C. fulvum resistance genes of the Vf region), was used to transform the susceptible apple cultivar Gala. Four independent transformed lines resistant to apple scab were produced, proving that HcrVf2 is sufficient to confer scab resistance to a susceptible cultivar. The results show that direct gene transfer between cross-compatible species can be viable when, as in apple, the use of backcrosses to introduce resistance genes from wild species cannot exactly reconstitute the heterozygous genotype of clonally propagated cultivars.
Collapse
Affiliation(s)
- Enrico Belfanti
- Department of Fruit Tree and Woody Plant Sciences, University of Bologna, 40127 Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Luo H, Kausch AP. Application of FLP/FRT site-specific DNA recombination system in plants. GENETIC ENGINEERING 2003; 24:1-16. [PMID: 12416298 DOI: 10.1007/978-1-4615-0721-5_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Hong Luo
- HybriGene L.L.C., 530 Liberty Lane, West Kingston, RI 02892, USA
| | | |
Collapse
|
10
|
Gidoni D, Bar M, Gilboa N. FLP/FRT-mediated restoration of normal phenotypes and clonal sectors formation in rolC transgenic tobacco. Transgenic Res 2001; 10:317-28. [PMID: 11592711 DOI: 10.1023/a:1016603627254] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Site-specific recombination systems have been shown to excise transgene DNA sequences positioned between their cognate target sites, and thus be used to generate clonal sectors in transgenic plants. Here we characterized clonal sectors derived from genetic reversion of rolC (A. rhizogenes)--induced vegetative and reproductive phenotypes, mediated by FLP recombinase from S. cerevisiae, in tobacco. The constitutive expression of rolC induces pleiotropic effects including reduced apical dominance and plant height, lanceolate and pale green leaves and small, male-sterile flowers. Two transgenic male-sterile tobacco lines (N. tabacum, Samsun NN) expressing a 35sP-rolC gene construct flanked by two FRT (FLP recombinase target) sites, were cross-pollinated with pollen from a constitutive 35sP-FLP expressing line. Three main phenotypes were generated in result of recombinase-mediated excision of the 35sP-rolC locus in the F1 (FLP x FRT-35sP-rolC-FRT) hybrid progenies: (a) restoration of male fertility, associated with reversion to normal leaf phenotypes prior to flower bud formation, (b) development of normal and fertile lateral shoot sectors on the background of rolC-type plants, (c) restoration of partially fertile flowers, associated with display of peripheral normal leaf sectors surrounding rolC-type inner-leaf tissues, consistent with periclinal chimeras. These results, supported by DNA molecular analysis, indicate that site-specific recombination might be used as a relatively efficient tool for generation of transgenic periclinal chimeric plants.
Collapse
Affiliation(s)
- D Gidoni
- Department of Plant Genetics, Institute of Field and Garden Crops, ARO, The Volcani Center, Bet Dagan, Israel.
| | | | | |
Collapse
|
11
|
Luo H, Lyznik LA, Gidoni D, Hodges TK. FLP-mediated recombination for use in hybrid plant production. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:423-430. [PMID: 10929135 DOI: 10.1046/j.1365-313x.2000.00782.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have studied the feasibility in Arabidopsis of using a site-specific recombination system FLP/FRT, from the 2 microm plasmid of yeast, for making plant hybrids. Initially, Arabidopsis plants expressing the FLP site-specific recombinase were crossed with plants transformed with a vector containing kanamycin-resistance gene (npt) flanked by FRT sites, which also served to separate the CaMV35S promoter from a promoterless gusA. Hybrid progeny were tested for excision of the npt gene and the positioning of 35S promoter proximal to gusA. GUS activity was observed in the progeny of all crosses, but not in the progeny derived from the self-pollinated homozygous parents. We then induced male sterility in Arabidopsis plants using the antisense expression of a pollen- and tapetum-specific gene, bcp1, flanked by FRT sites. Upon cross-pollination of flowers on the same male-sterile plants with pollen from FLP-containing plants, viable seeds were produced and the progeny hybrid plants developed normally. Molecular analyses revealed that the antisense expression cassette of bcp1 had been excised in these plants. These results show for the first time that a site-specific recombinase can be used to restore fertility in male-sterile plants, providing an alternative method for the production of hybrid seeds and plants.
Collapse
Affiliation(s)
- H Luo
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
12
|
Affiliation(s)
- J J Finer
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, Ohio State University, Wooster 44691, USA
| | | | | |
Collapse
|