1
|
Caron G, Bilchak JN, Côté MP. Direct evidence for decreased presynaptic inhibition evoked by PBSt group I muscle afferents after chronic SCI and recovery with step-training in rats. J Physiol 2020; 598:4621-4642. [PMID: 32721039 DOI: 10.1113/jp280070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/27/2020] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Presynaptic inhibition is modulated by supraspinal centres and primary afferents in order to filter sensory information, adjust spinal reflex excitability, and ensure smooth movement. After spinal cord injury (SCI), the supraspinal control of primary afferent depolarization (PAD) interneurons is disengaged, suggesting an increased role for sensory afferents. While increased H-reflex excitability in spastic individuals indicates a possible decrease in presynaptic inhibition, it remains unclear whether a decrease in sensory-evoked PAD contributes to this effect. We investigated whether the PAD evoked by hindlimb afferents contributes to the change in presynaptic inhibition of the H-reflex in a decerebrated rat preparation. We found that chronic SCI decreases presynaptic inhibition of the plantar H-reflex through a reduction in PAD evoked by posterior biceps-semitendinosus (PBSt) muscle group I afferents. We further found that step-training restored presynaptic inhibition of the plantar H-reflex evoked by PBSt, suggesting the presence of activity-dependent plasticity of PAD pathways activated by flexor muscle group I afferents. ABSTRACT Spinal cord injury (SCI) results in the disruption of supraspinal control of spinal networks and an increase in the relative influence of afferent feedback to sublesional neural networks, both of which contribute to enhancing spinal reflex excitability. Hyperreflexia occurs in ∼75% of individuals with a chronic SCI and critically hinders functional recovery and quality of life. It is suggested that it results from an increase in motoneuronal excitability and a decrease in presynaptic and postsynaptic inhibitory mechanisms. In contrast, locomotor training decreases hyperreflexia by restoring presynaptic inhibition. Primary afferent depolarization (PAD) is a powerful presynaptic inhibitory mechanism that selectively gates primary afferent transmission to spinal neurons to adjust reflex excitability and ensure smooth movement. However, the effect of chronic SCI and step-training on the reorganization of presynaptic inhibition evoked by hindlimb afferents, and the contribution of PAD has never been demonstrated. The objective of this study is to directly measure changes in presynaptic inhibition through dorsal root potentials (DRPs) and its association with plantar H-reflex inhibition. We provide direct evidence that H-reflex hyperexcitability is associated with a decrease in transmission of PAD pathways activated by posterior biceps-semitendinosus (PBSt) afferents after chronic SCI. More precisely, we illustrate that the pattern of inhibition evoked by PBSt group I muscle afferents onto both L4-DRPs and plantar H-reflexes evoked by the distal tibial nerve is impaired after chronic SCI. These changes are not observed in step-trained animals, suggesting a role for activity-dependent plasticity to regulate PAD pathways activated by flexor muscle group I afferents.
Collapse
Affiliation(s)
- Guillaume Caron
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, 19129
| | - Jadwiga N Bilchak
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, 19129
| | - Marie-Pascale Côté
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, 19129
| |
Collapse
|
2
|
Lucas-Osma AM, Li Y, Lin S, Black S, Singla R, Fouad K, Fenrich KK, Bennett DJ. Extrasynaptic α 5GABA A receptors on proprioceptive afferents produce a tonic depolarization that modulates sodium channel function in the rat spinal cord. J Neurophysiol 2018; 120:2953-2974. [PMID: 30256739 DOI: 10.1152/jn.00499.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of GABAA receptors on sensory axons produces a primary afferent depolarization (PAD) that modulates sensory transmission in the spinal cord. While axoaxonic synaptic contacts of GABAergic interneurons onto afferent terminals have been extensively studied, less is known about the function of extrasynaptic GABA receptors on afferents. Thus, we examined extrasynaptic α5GABAA receptors on low-threshold proprioceptive (group Ia) and cutaneous afferents. Afferents were impaled with intracellular electrodes and filled with neurobiotin in the sacrocaudal spinal cord of rats. Confocal microscopy was used to reconstruct the afferents and locate immunolabelled α5GABAA receptors. In all afferents α5GABAA receptors were found throughout the extensive central axon arbors. They were most densely located at branch points near sodium channel nodes, including in the dorsal horn. Unexpectedly, proprioceptive afferent terminals on motoneurons had a relative lack of α5GABAA receptors. When recording intracellularly from these afferents, blocking α5GABAA receptors (with L655708, gabazine, or bicuculline) hyperpolarized the afferents, as did blocking neuronal activity with tetrodotoxin, indicating a tonic GABA tone and tonic PAD. This tonic PAD was increased by repeatedly stimulating the dorsal root at low rates and remained elevated for many seconds after the stimulation. It is puzzling that tonic PAD arises from α5GABAA receptors located far from the afferent terminal where they can have relatively little effect on terminal presynaptic inhibition. However, consistent with the nodal location of α5GABAA receptors, we find tonic PAD helps produce sodium spikes that propagate antidromically out the dorsal roots, and we suggest that it may well be involved in assisting spike transmission in general. NEW & NOTEWORTHY GABAergic neurons are well known to form synaptic contacts on proprioceptive afferent terminals innervating motoneurons and to cause presynaptic inhibition. However, the particular GABA receptors involved are unknown. Here, we examined the distribution of extrasynaptic α5GABAA receptors on proprioceptive Ia afferents. Unexpectedly, these receptors were found preferentially near nodal sodium channels throughout the afferent and were largely absent from afferent terminals. These receptors produced a tonic afferent depolarization that modulated sodium spikes, consistent with their location.
Collapse
Affiliation(s)
- Ana M Lucas-Osma
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Yaqing Li
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Shihao Lin
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Sophie Black
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Rahul Singla
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - David J Bennett
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
3
|
Johnson MD, Frigon A, Hurteau MF, Cain C, Heckman CJ. Reflex wind-up in early chronic spinal injury: plasticity of motor outputs. J Neurophysiol 2017; 117:2065-2074. [PMID: 28250155 DOI: 10.1152/jn.00981.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 11/22/2022] Open
Abstract
In this study we evaluate temporal summation (wind-up) of reflexes in select distal and proximal hindlimb muscles in response to repeated stimuli of the distal tibial or superficial peroneal nerves in cats 1 mo after complete spinal transection. This report is a continuation of our previous paper on reflex wind-up in the intact and acutely spinalized cat. To evaluate reflex wind-up in both studies, we recorded electromyographic signals from the following left hindlimb muscles: lateral gastrocnemius (LG), tibialis anterior (TA), semitendinosus (ST), and sartorius (Srt), in response to 10 electrical pulses to the tibial or superficial peroneal nerves. Two distinct components of the reflex responses were considered, a short-latency compound action potential (CAP) and a longer duration bout of sustained activity (SA). These two response types were shown to be differentially modified by acute spinal injury in our previous work (Frigon A, Johnson MD, Heckman CJ. J Physiol 590: 973-989, 2012). We show that these responses exhibit continued plasticity during the 1-mo recovery period following acute spinalization. During this early chronic phase, wind-up of SA responses returned to preinjury levels in one muscle, the ST, but remained depressed in all other muscles tested. In contrast, CAP response amplitudes, which were initially potentiated following acute transection, returned to preinjury levels in all muscles except for Srt, which continued to show marked increase. These findings illustrate that spinal elements exhibit considerable plasticity during the recovery process following spinal injury and highlight the importance of considering SA and CAP responses as distinct phenomena with unique underlying neural mechanisms.NEW & NOTEWORTHY This research is the first to assess temporal summation, also called wind-up, of muscle reflexes during the 1-mo recovery period following spinal injury. Our results show that two types of muscle reflex activity are differentially modulated 1 mo after spinal cord injury (SCI) and that spinal reflexes are altered in a muscle-specific manner during this critical period. This postinjury plasticity likely plays an important role in spasticity experienced by individuals with SCI.
Collapse
Affiliation(s)
- Michael D Johnson
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois;
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marie-France Hurteau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Charlette Cain
- Center for Comparative Medicine, Northwestern University, Chicago, Illinois; and
| | - C J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Physical Therapy and Human Movement Sciences, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
4
|
Independent control of presynaptic inhibition by reticulospinal and sensory inputs at rest and during rhythmic activities in the cat. J Neurosci 2013; 33:8055-67. [PMID: 23637195 DOI: 10.1523/jneurosci.2911-12.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To be functionally relevant during movement, the transmission from primary afferents must be efficiently controlled by presynaptic inhibition. Sensory feedback, central pattern generators, and supraspinal structures can all evoke presynaptic inhibition, but we do not understand how these inputs interact during movement. Here, we investigated the convergence of inputs from the reticular formation and sensory afferents on presynaptic inhibitory pathways and their modulation at rest and during two fictive motor tasks (locomotion and scratch) in decerebrate cats. The amplitude of primary afferent depolarization (PAD), an estimate of presynaptic inhibition, was recorded in individual afferents with intra-axonal recordings and in a mix of afferents in lumbar dorsal rootlets (dorsal root potential [DRP]) with bipolar electrodes. There was no spatial facilitation between inputs from reticulospinal and sensory afferents with DRPs or PADs, indicating an absence of convergence. However, spatial facilitation could be observed by combining two sensory inputs, indicating that convergence was possible. Task-dependent changes in the amplitude of responses were similar for reticulospinal and sensory inputs, increasing during fictive locomotion and decreasing during fictive scratch. During fictive locomotion, DRP and PAD amplitudes evoked by reticulospinal inputs were increased during the flexion phase, whereas sensory-evoked DRPs and PADs showed maximal amplitude in either flexion or extension phases. During fictive scratch, the amplitudes of DRPs and PADs evoked by both sources were maximal in flexion. The absence of spatial facilitation and different phase-dependent modulation patterns during fictive locomotion are consistent with independent presynaptic inhibitory pathways for reticulospinal and sensory inputs.
Collapse
|
5
|
Frigon A, Hurteau MF, Johnson MD, Heckman CJ, Telonio A, Thibaudier Y. Synchronous and asynchronous electrically evoked motor activities during wind-up stimulation are differentially modulated following an acute spinal transection. J Neurophysiol 2012; 108:3322-32. [PMID: 22993264 DOI: 10.1152/jn.00683.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we used a novel technique to study reflex wind-up when the spinal cord is intact and following an acute spinal transection. Specifically, we evaluated reflex responses evoked by a series of 10 electrical pulses to the tibial or superficial peroneal nerves in 9 decerebrate adult cats, before and after an acute spinal transection. Electromyograms were recorded in four hindlimb muscles (lateral gastrocnemius, tibialis anterior, semitendinosus, and sartorius) to evaluate reflex amplitude, duration, and the temporal summation of reflex responses, so-called wind-up. We identified two distinct reflex responses evoked by electrical stimulation of the tibial or superficial peroneal nerves on the basis of their pattern of change following acute spinal transection, a short-latency (∼10 ms) compound action potential (CAP) that was followed by a burst of sustained activity (SA). Wind-up of CAP and SA amplitudes was clearly present when the spinal cord was intact but was drastically reduced after acute spinalization in some muscles. Moreover, CAP and SA reflex responses were differentially modified by the acute spinalization. When the effects of acute spinal transection were significant, CAP responses were increased after acute spinalization, whereas SA responses were reduced, suggesting that the two signals are regulated by different neuronal mechanisms. The present results provide the first assessment of reflex wind-up before and after an acute spinal transection in the same animals and indicate that different reflex components must be considered separately when evaluating changes in neuronal excitability following SCI.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre de recherche Clinique Étienne-Le Bel, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
6
|
Bautista W, Nagy JI, Dai Y, McCrea DA. Requirement of neuronal connexin36 in pathways mediating presynaptic inhibition of primary afferents in functionally mature mouse spinal cord. J Physiol 2012; 590:3821-39. [PMID: 22615430 PMCID: PMC3476635 DOI: 10.1113/jphysiol.2011.225987] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/17/2012] [Indexed: 01/28/2023] Open
Abstract
Electrical synapses formed by gap junctions containing connexin36 (Cx36) promote synchronous activity of interneurones in many regions of mammalian brain; however, there is limited information on the role of electrical synapses in spinal neuronal networks. Here we show that Cx36 is widely distributed in the spinal cord and is involved in mechanisms that govern presynaptic inhibition of primary afferent terminals. Electrophysiological recordings were made in spinal cord preparations from 8- to 11-day-old wild-type and Cx36 knockout mice. Several features associated with presynaptic inhibition evoked by conditioning stimulation of low threshold hindlimb afferents were substantially compromised in Cx36 knockout mice. Dorsal root potentials (DRPs) evoked by low intensity stimulation of sensory afferents were reduced in amplitude by 79% and in duration by 67% in Cx36 knockouts. DRPs were similarly affected in wild-types by bath application of gap junction blockers. Consistent with presynaptic inhibition of group Ia muscle spindle afferent terminals on motoneurones described in adult cats, conditioning stimulation of an adjacent dorsal root evoked a long duration inhibition of monosynaptic reflexes recorded from the ventral root in wild-type mice, and this inhibition was antagonized by bicuculline. The same conditioning stimulation failed to inhibit monosynaptic reflexes in Cx36 knockout mice. Immunofluorescence labelling for Cx36 was found throughout the dorsal and ventral horns of the spinal cord of juvenile mice and persisted in mature animals. In deep dorsal horn laminae, where interneurones involved in presynaptic inhibition of large diameter muscle afferents are located, cells were extensively dye-coupled following intracellular neurobiotin injection. Coupled cells displayed Cx36-positive puncta along their processes. Our results indicate that gap junctions formed by Cx36 in spinal cord are required for maintenance of presynaptic inhibition, including the regulation of transmission from Ia muscle spindle afferents. In addition to a role in presynaptic inhibition in juvenile animals, the persistence of Cx36 expression among spinal neuronal populations in the adult mouse suggests that the contribution of electrical synapses to integrative processes in fully mature spinal cord may be as diverse as that found in other areas of the CNS.
Collapse
Affiliation(s)
- Wendy Bautista
- Spinal Cord Research Centre, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | | | | | | |
Collapse
|
7
|
In search of lost presynaptic inhibition. Exp Brain Res 2009; 196:139-51. [PMID: 19322562 DOI: 10.1007/s00221-009-1758-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 02/24/2009] [Indexed: 01/18/2023]
Abstract
This chapter presents an historical review on the development of some of the main findings on presynaptic inhibition. Particular attention is given to recent studies pertaining the differential GABAa control of the synaptic effectiveness of muscle, cutaneous and articular afferents, to some of the problems arising with the identification of the interneurons mediating the GABAergic depolarization of primary afferents (PAD) of muscle afferents, on the influence of the spontaneous activity of discrete sets of dorsal horn neurons on the pathways mediating PAD of muscle and cutaneous afferents, and to the unmasking of the cutaneous-evoked responses in the lumbosacral spinal cord and associated changes in tonic PAD that follow acute and chronic section of cutaneous nerves. The concluding remarks are addressed to several issues that need to be considered to have a better understanding of the functional role of presynaptic inhibition and PAD on motor performance and sensory processing and on their possible contribution to the shaping of a higher coherence between the cortically programmed and the executed movements.
Collapse
|
8
|
Aggelopoulos NC, Chakrabarty S, Edgley SA. Presynaptic control of transmission through group II muscle afferents in the midlumbar and sacral segments of the spinal cord is independent of corticospinal control. Exp Brain Res 2008; 187:61-70. [PMID: 18231783 PMCID: PMC2755734 DOI: 10.1007/s00221-008-1279-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 01/10/2008] [Indexed: 11/26/2022]
Abstract
Transmission of information from the terminals group II muscle afferents is subject to potent presynaptic modulation by both segmental group II and cutaneous afferents and by descending monoaminergic systems. Currently it is unknown whether descending corticospinal fibres affect this transmission. Here we have examined whether corticospinal tract activation modulates the size of monosynaptic focal synaptic potentials (FSPs) evoked by group II muscle afferents, and the excitability of intraspinal terminals of group II afferents, both of which are indices used to show presynaptic control. Conditioning stimulation of corticospinal pathways had no effects on the sizes of group II evoked FSPs in the midlumbar or sacral segments at either dorsal horn or intermediate zone locations. These stimuli also had no effect on the excitability of single group II afferent terminals in the dorsal horn of the midlumbar segments. As positive controls, we verified that the corticospinal conditioning stimuli used did effectively depress FSPs evoked from cutaneous afferents recorded at the same spinal locations as the group II field potentials in all experiments. Corticospinal tract conditioning stimuli did not consistently enhance or reduce the depression of group II FSPs that was evoked by stimulation of ipsilateral segmental group II or cutaneous afferents; in the large majority of cases there was no effect. The results reveal that the control of transmission of information from group II afferents in these regions of the spinal cord is independent of direct corticospinal control.
Collapse
Affiliation(s)
- N. C. Aggelopoulos
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, CB2 3DY UK
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - S. Chakrabarty
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, CB2 3DY UK
- Centre for Neurobiology and Behaviour, Columbia University, New York, USA
| | - S. A. Edgley
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, CB2 3DY UK
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY UK
| |
Collapse
|
9
|
Abstract
Presynaptic inhibition is one of many areas of neurophysiology in which Sir John Eccles did pioneering work. Frank and Fuortes first described presynaptic inhibition in 1957. Subsequently, Eccles and his colleagues characterized the process more fully and showed its relationship to primary afferent depolarization. Eccles' studies emphasized presynaptic inhibition of the group Ia monosynaptic reflex pathway but also included group Ib, II and cutaneous afferent pathways, and the dorsal column nuclei. Presynaptic inhibition of the group Ia afferent pathway was demonstrated by depression of monosynaptic excitatory postsynaptic potentials and inhibition of monosynaptic reflex discharges. Primary afferent depolarization was investigated by recordings of dorsal root potentials, dorsal root reflexes, cord dorsum and spinal cord field potentials, and tests of the excitability of primary afferent terminals. Primary afferent depolarization was proposed to result in presynaptic inhibition by reducing the amplitude of the action potential as it invades presynaptic terminals. This resulted in less calcium influx and, therefore, less transmitter release. Presynaptic inhibition and primary afferent depolarization could be blocked by antagonists of GABA(A) receptors, implying a role of interneurons that release gamma aminobutyric acid in the inhibitory circuit. The reason why afferent terminals were depolarized was later explained by a high intracellular concentration of Cl(-) ions in primary sensory neurons. Activation of GABA(A) receptors opens Cl(-) channels, and Cl(-) efflux results in depolarization. Another proposed mechanism of depolarization was an increase in extracellular concentration of K(+) following neural activity. Eccles' work on presynaptic inhibition has since been extended in a variety of ways.
Collapse
Affiliation(s)
- William D Willis
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, 77555-1069, USA.
| |
Collapse
|
10
|
Rudomin P, Lomelí J, Quevedo J. Tonic differential supraspinal modulation of PAD and PAH of segmental and ascending intraspinal collaterals of single group I muscle afferents in the cat spinal cord. Exp Brain Res 2004; 159:239-50. [PMID: 15232667 DOI: 10.1007/s00221-004-1953-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 04/20/2004] [Indexed: 11/29/2022]
Abstract
We compared in the anesthetized cat the effects of reversible spinalization by cold block on primary afferent depolarization (PAD) and primary afferent hyperpolarization (PAH) elicited in pairs of intraspinal collaterals of single group I afferents from the gastrocnemius nerve, one of the pairs ending in the L3 segment, around the Clarke's column nuclei, and the other in the L6 segment within the intermediate zone. PAD in each collateral was estimated by independent computer-controlled measurement of the intraspinal current required to maintain a constant probability of antidromic firing. The results indicate that the segmental and ascending collaterals of individual afferents are subjected to a tonic PAD of descending origin affecting in a differential manner the excitatory and inhibitory actions of cutaneous and joint afferents on the pathways mediating the PAD of group I fibers. The PAD-mediating networks appear to function as distributed systems whose output will be determined by the balance of the segmental and supraspinal influences received at that moment. It is suggested that the descending differential modulation of PAD enables the intraspinal arborizations of the muscle afferents to function as dynamic systems, in which information transmitted to segmental reflex pathways and to Clarke's column neurons by common sources can be decoupled by sensory and descending inputs, and funneled to specific targets according to the motor tasks to be performed.
Collapse
Affiliation(s)
- P Rudomin
- Department of Physiology, Biophysics and Neurosciences del IPN, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, DF 07300, Mexico.
| | | | | |
Collapse
|
11
|
Rudomin P, Lomelí J, Quevedo J. Differential modulation of primary afferent depolarization of segmental and ascending intraspinal collaterals of single muscle afferents in the cat spinal cord. Exp Brain Res 2004; 156:377-91. [PMID: 14985894 DOI: 10.1007/s00221-003-1788-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 11/11/2003] [Indexed: 10/26/2022]
Abstract
We examined primary afferent depolarization (PAD) in the anesthetized cat elicited in 109 pairs of intraspinal collaterals of single group I afferents from the gastrocnemius nerve, one of the pair ending in the L3 segment, around the Clarke's column nuclei, and the other in the L6 segment within the intermediate zone. Tests for refractoriness were made to assess whether the responses produced by intraspinal stimulation in the L3 and L6 segments were due to activation of collaterals of the same afferent fiber. PAD in each collateral was estimated by independent computer-controlled measurement of the intraspinal current required to maintain a constant probability of antidromic firing. In most fibers, stimulation of the ipsilateral posterior biceps and semitendinosus (PBSt) nerve with trains of pulses maximal for group I afferents had a qualitatively similar effect but produced a larger PAD in the L6 than in the L3 collaterals. Stimulation of cutaneous nerves (sural and superficial peroneus) with single pulses and of the posterior articular nerve, the ipsilateral reticular formation, nucleus raphe magnus and contralateral motor cortex with trains of pulses often had qualitatively different effects. They could produce PAD and/or facilitate the PBSt-induced PAD in one collateral, and produce PAH and/or inhibit the PAD in the other collateral. These patterns could be changed in a differential manner by sensory or supraspinal conditioning stimulation. In summary, the present investigation suggests that the segmental and ascending collaterals of individual afferents are not fixed routes for information transmission, but parts of dynamic systems in which information transmitted to segmental reflex pathways and to Clarke's column neurons by common sources can be decoupled by sensory and descending inputs and funneled to specific targets according to the motor tasks to be performed.
Collapse
Affiliation(s)
- P Rudomin
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico.
| | | | | |
Collapse
|
12
|
Ménard A, Leblond H, Gossard JP. Modulation of monosynaptic transmission by presynaptic inhibition during fictive locomotion in the cat. Brain Res 2003; 964:67-82. [PMID: 12573514 DOI: 10.1016/s0006-8993(02)04067-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of multisensory inputs onto the presynaptic inhibitory pathways affecting IA terminals was studied during fictive locomotion in decerebrated cats. The effect was evaluated from changes in amplitude of the monosynaptic excitatory postsynaptic potential (EPSP) measured in lumbosacral motoneurones. Responses were grouped and averaged according to their timing within the step cycle divided into five bins. Presynaptic inhibition was evoked by stimulating group I afferents from the posterior biceps-semitendinosus (PBSt) muscles and one of three cutaneous nerves: superficial peroneal (SP), sural and saphenous. Statistical analysis was applied to compare (1) EPSPs conditioned by PBSt input alone and those conditioned by the combined PBSt and cutaneous inputs, and (2) each bin dividing the step cycle to disclose phase-dependent changes. Results from 19 motoneurones showed that: (1) there was a significant phase-dependent modulation in EPSP amplitude (by 25%) with the maximum usually occurring during the depolarized phase; (2) PBSt alone reduced the EPSP amplitude (by 21%) in 3.2 bins on average; (3) combined PBSt and cutaneous stimuli further modified (up or down) the EPSP amplitude in half the trials but only in one to two bins; and (4) the most efficient cutaneous nerve (SP) usually decreased the PBSt-evoked reduction in EPSP size. Minimal changes in membrane input resistance suggest that the EPSP modifications were mostly due to presynaptic inhibition. Results indicate that muscle afferents can induce an important phase-dependent presynaptic inhibition of monosynaptic transmission and that concomitant activation of cutaneous afferents can alter this inhibition but only for a restricted part of the step cycle.
Collapse
Affiliation(s)
- Ariane Ménard
- Centre de Recherche en Sciences Neurologiques, Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succ. Centre-ville, Québec, Montréal, Canada H3C 3J7
| | | | | |
Collapse
|
13
|
Enríquez-Denton M, Morita H, Christensen LOD, Petersen N, Sinkjaer T, Nielsen JB. Interaction between peripheral afferent activity and presynaptic inhibition of ia afferents in the cat. J Neurophysiol 2002; 88:1664-74. [PMID: 12364496 DOI: 10.1152/jn.2002.88.4.1664] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been demonstrated in man that the H-reflex is more depressed by presynaptic inhibition than the stretch reflex. Here we investigated this finding further in the alpha-chloralose-anesthetized cat. Soleus monosynaptic reflexes were evoked by electrical stimulation of the tibial nerve or by stretch of the triceps surae muscle. Conditioning stimulation of the posterior biceps and semitendinosus nerve (PBSt) produced a significantly stronger depression of the electrically than the mechanically evoked reflexes. The depression of the reflexes has been shown to be caused by presynaptic inhibition of triceps surae Ia afferents. We investigated the hypothesis that repetitive activation of peripheral afferents may reduce their sensitivity to presynaptic inhibition. In triceps surae motoneurones, we measured the effect of presynaptic inhibition on excitatory postsynaptic potentials (EPSPs) produced by repetitive activation of the peripheral afferents or by fast and slow muscle stretch. EPSPs evoked by single electrical stimulation of the tibial nerve or by fast muscle stretch were significantly depressed by PBSt stimulation. However, the last EPSP in a series of EPSPs evoked by a train of electrical stimuli (5-6 shocks, 150-200 Hz) was significantly less depressed by the conditioning stimulation than the first EPSP. In addition, the last part of the long-lasting EPSPs evoked by a slow muscle stretch was also less depressed than the first part. A single EPSP evoked by stimulation of the medial gastrocnemius nerve was less depressed when preceded by a train of stimuli applied to the same nerve than when the same train of stimuli was applied to a synergistic nerve. The decreased sensitivity of the test EPSP to presynaptic inhibition was maximal when it was evoked within 20 ms after the train of EPSPs. It was not observed at intervals longer than 30 ms. These findings suggest that afferent activity may decrease the efficiency of presynaptic inhibition. We propose that the described interaction between afferent nerve activity and presynaptic inhibition may partly explain why electrically and mechanically evoked reflexes are differently sensitive to presynaptic inhibition.
Collapse
Affiliation(s)
- M Enríquez-Denton
- Division of Neurophysiology, Department of Medical Physiology, The Panum Institute. University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
14
|
Rudomin P. Central control of information transmission through the intraspinal arborizations of sensory fibers examined 100 years after Ramón y Cajal. PROGRESS IN BRAIN RESEARCH 2002; 136:409-21. [PMID: 12143398 DOI: 10.1016/s0079-6123(02)36033-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
About 100 years ago, Santiago Ramón y Cajal reported that sensory fibers entering the spinal cord have ascending and descending branches, and that each of them sends collaterals to the gray matter where they have profuse ramifications. To him this was a fundamental discovery and proposed that the intraspinal branches of the sensory fibers were "centripetal conductors by which sensory excitation is propagated to the various neurons in the gray matter". In addition, he assumed that "conduction of excitation within the intraspinal arborizations of the afferent fibers would be proportional to the diameters of the conductors", and that excitation would preferentially flow through the coarsest branches. The invariability of some elementary reflexes such as the knee jerk would be the result of a long history of plastic adaptations and natural selection of the safest neuronal organizations. There is now evidence suggesting that in the adult cat, the intraspinal branches of sensory fibers are not hard wired routes that diverge excitation to spinal neurons in an invariable manner, but rather dynamic pathways where excitation flow can be centrally addressed to reach specific neuronal targets. This central control of information flow is achieved by means of specific sets of GABAergic interneurons that produce primary afferent depolarization (PAD) via axo-axonic synapses and reduce transmitter release (presynaptic inhibition). The PAD produced by single, or by small groups of GABAergic interneurons in group I muscle afferents, can remain confined to some sets of intraspinal arborizations of the afferent fibers and not spread to nearby collaterals. In muscle spindle afferents this local character of PAD allows cutaneous and descending inputs to differentially inhibit the PAD in segmental and ascending collaterals of individual fibers, which may be an effective way to decouple the information flow arising from common sensory inputs. This feature appears to play an important role in the selection of information flow in muscle spindles that occurs at the onset of voluntary contractions in humans.
Collapse
Affiliation(s)
- Pablo Rudomin
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 07000 Mexico D.F., Mexico.
| |
Collapse
|
15
|
Ménard A, Leblond H, Gossard JP. Sensory integration in presynaptic inhibitory pathways during fictive locomotion in the cat. J Neurophysiol 2002; 88:163-71. [PMID: 12091542 DOI: 10.1152/jn.2002.88.1.163] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study is to understand how sensory inputs of different modalities are integrated into spinal cord pathways controlling presynaptic inhibition during locomotion. Primary afferent depolarization (PAD), an estimate of presynaptic inhibition, was recorded intra-axonally in group I afferents (n = 31) from seven hindlimb muscles in L(6)-S(1) segments during fictive locomotion in the decerebrate cat. PADs were evoked by stimulating alternatively low-threshold afferents from a flexor nerve, a cutaneous nerve and a combination of both. The fictive step cycle was divided in five bins and PADs were averaged in each bin and their amplitude compared. PADs evoked by muscle stimuli alone showed a significant phase-dependent modulation in 20/31 group I afferents. In 12/20 afferents, the cutaneous stimuli alone evoked a phase-dependent modulation of primary afferent hyperpolarization (PAH, n = 9) or of PADs (n = 3). Combining the two sensory modalities showed that cutaneous volleys could significantly modify the amplitude of PADs evoked by muscle stimuli in at least one part (bin) of the step cycle in 17/31 (55%) of group I afferents. The most common effect (13/17) was a decrease in the PAD amplitude by 35% on average, whereas it was increased by 17% on average in the others (4/17). Moreover, in 8/13 afferents, the PAD reduction was obtained in 4/5 bins i.e., for most of the duration of the step cycle. These effects were seen in group I afferents from all seven muscles. On the other hand, we found that different cutaneous nerves had quite different efficacy; the superficial peroneal (SP) being the most efficient (85% of trials) followed by Saphenous (60%) and caudal sural (44%) nerves. The results indicate that cutaneous interneurons may act, in part, by modulating the transmission in PAD pathways activated by group I muscle afferents. We conclude that cutaneous input, especially from the skin area on the dorsum of the paw (SP), could subtract presynaptic inhibition in some group I afferents during perturbations of stepping (e.g., hitting an obstacle) and could thus adjust the influence of proprioceptive feedback onto motoneuronal excitability.
Collapse
Affiliation(s)
- Ariane Ménard
- Centre de Recherche en Sciences Neurologiques, Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
| | | | | |
Collapse
|
16
|
Manjarrez E, Rojas-Piloni JG, Jimenez I, Rudomin P. Modulation of synaptic transmission from segmental afferents by spontaneous activity of dorsal horn spinal neurones in the cat. J Physiol 2000; 529 Pt 2:445-60. [PMID: 11101653 PMCID: PMC2270197 DOI: 10.1111/j.1469-7793.2000.00445.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2000] [Accepted: 08/08/2000] [Indexed: 11/28/2022] Open
Abstract
We examined, in the anaesthetised cat, the influence of the neuronal ensembles producing spontaneous negative cord dorsum potentials (nCDPs) on segmental pathways mediating primary afferent depolarisation (PAD) of cutaneous and group I muscle afferents and on Ia monosynaptic activation of spinal motoneurones. The intraspinal distribution of the field potentials associated with the spontaneous nCDPs indicated that the neuronal ensembles involved in the generation of these potentials were located in the dorsal horn of lumbar segments, in the same region of termination of low-threshold cutaneous afferents. During the occurrence of spontaneous nCDPs, transmission from low-threshold cutaneous afferents to second order neurones in laminae III-VI, as well as transmission along pathways mediating PAD of cutaneous and Ib afferents, was facilitated. PAD of Ia afferents was instead inhibited. Monosynaptic reflexes of flexors and extensors were facilitated during the spontaneous nCDPs. The magnitude of the facilitation was proportional to the amplitude of the 'conditioning' spontaneous nCDPs. This led to a high positive correlation between amplitude fluctuations of spontaneous nCDPs and fluctuations of monosynaptic reflexes. Stimulation of low-threshold cutaneous afferents transiently reduced the probability of occurrence of spontaneous nCDPs as well as the fluctuations of monosynaptic reflexes. It is concluded that the spontaneous nCDPs were produced by the activation of a population of dorsal horn neurones that shared the same functional pathways and involved the same set of neurones as those responding monosynaptically to stimulation of large cutaneous afferents. The spontaneous activity of these neurones was probably the main cause of the fluctuations of the monosynaptic reflexes observed under anaesthesia and could provide a dynamic linkage between segmental sensory and motor pathways.
Collapse
Affiliation(s)
- E Manjarrez
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigacion y Estudios Avanzados del Instituto Politecnico Nacional, Mexico DF
| | | | | | | |
Collapse
|
17
|
Tankéré F, Maisonobe T, Naccache L, Lamas G, Soudant J, Danziger N, Bouche P, Fournier E, Willer JC. Further evidence for a central reorganisation of synaptic connectivity in patients with hypoglossal-facial anastomosis in man. Brain Res 2000; 864:87-94. [PMID: 10793190 DOI: 10.1016/s0006-8993(00)02177-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In normal subjects, electrical stimulation of trigeminal mucosal afferents (lingual nerve - V3) can elicit a short latency (12.5+/-0. 3 ms; mean+/-S.D.) reflex response in the ipsilateral genioglossus muscle (Maisonobe et al., Reflexes elicited from cutaneous and mucosal trigeminal afferents in normal human subjects. Brain Res. 1998;810:220-228). In the present study on patients with hypoglossal-facial (XII-VII) nerve anastomoses, we were able to record similar R1-type blink reflex responses in the orbicularis oculi muscles, following stimulation of either supraorbital nerve (V1) or lingual nerve (V3) afferents. However, these responses were not present in normal control subjects. Voluntary swallowing movements produced clear-cut facilitations of the R1 blink reflex response elicited by stimulation of V1 afferents. In a conditioning-test procedure with a variable inter-stimulus interval, the R1 blink reflex response elicited by supraorbital nerve stimulation was facilitated by an ipsilateral mucosal conditioning stimulus in the V3 region. This facilitatory effect was maximal when the two stimuli (conditioning and test) were applied simultaneously. This effect was not observed on the R1 component of the blink reflex in the normal control subjects. These data strongly suggest that in patients with XII-VII anastomoses, but not in normal subjects, both cutaneous (V1) and mucosal (V3) trigeminal afferents project onto the same interneurones in the trigeminal principal sensory nucleus. This clearly supports the idea that peripheral manipulation of the VIIth and the XIIth nerves induces a plastic change within this nucleus.
Collapse
Affiliation(s)
- F Tankéré
- Department of ENT, Hôpital Pitié-Salpêtrière-47, 91 Bd. de l'Hôpital, 75013, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rudomin P. Selectivity of presynaptic inhibition: a mechanism for independent control of information flow through individual collaterals of single muscle spindle afferents. PROGRESS IN BRAIN RESEARCH 2000; 123:109-17. [PMID: 10635708 DOI: 10.1016/s0079-6123(08)62848-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- P Rudomin
- Department of Physiology and Biophysics, Instituto Politécnico Nacional, México D.F., Mexico.
| |
Collapse
|
19
|
Abstract
The synaptic effectiveness of sensory fibers ending in the spinal cord of vertebrates can be centrally controlled by means of specific sets of GABAergic interneurons that make axo-axonic synapses with the terminal arborizations of the afferent fibers. In the steady state, the intracellular concentration of chloride ions in these terminals is higher than that predicted from a passive distribution, because of an active transport mechanism. Following the release of GABA by spinal interneurons and activation of GABA(A) receptors in the afferent terminals, there is an outwardly directed efflux of chloride ions that produces primary afferent depolarization (PAD) and reduces transmitter release (presynaptic inhibition). Studies made by intrafiber recording of PAD, or by measuring changes in the intraspinal threshold of single afferent terminals (which is reduced during PAD), have further indicated that muscle and cutaneous afferents have distinctive, but modifiable PAD patterns in response to segmental and descending stimuli. This has suggested that PAD and presynaptic inhibition in the various types of afferents is mediated by separate sets of last-order GABAergic interneurons. Direct activation, by means of intraspinal microstimulation, of single or small groups of last-order PAD-mediating interneurons shows that the monosynaptic PAD elicited in Ia and Ib afferents can remain confined to some sets of the intraspinal collaterals and not spread to nearby collaterals. The local character of PAD allows cutaneous and descending inputs to selectively inhibit the PAD of segmental and ascending intraspinal collaterals of individual muscle spindle afferents. It thus seems that the intraspinal branches of the sensory fibers are not hard wired routes that diverge excitation to spinal neurons, but are instead dynamic pathways that can be centrally controlled to address information to selected neuronal targets. This feature appears to play an important role in the selection of information flow in muscle spindles that occurs at the onset of voluntary contractions in humans.
Collapse
Affiliation(s)
- P Rudomin
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Fisiologia, Biofisica y Neurosciencias, Mexico DF, Mexico
| |
Collapse
|
20
|
Vinay L, Clarac F. Antidromic discharges of dorsal root afferents and inhibition of the lumbar monosynaptic reflex in the neonatal rat. Neuroscience 1999; 90:165-76. [PMID: 10188943 DOI: 10.1016/s0306-4522(98)00435-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The in vitro brain stem-spinal cord preparation of neonatal (0- to five-day-old) rats was used to establish whether pathways descending from the brain stem are capable of modulating synaptic transmission from primary afferents to lumbar motoneurons within the first few days after birth. We stimulated the ventral funiculus of the spinal cord at the cervical (C1-C2) level. Single-pulse stimulations evoked both excitatory and inhibitory postsynaptic potentials in ipsilateral lumbar (L2-L5) motoneurons which were recorded intracellularly. Twin-pulse stimulations evoked bursts of action potentials in ventral roots. The amplitude of the monosynaptic dorsal root-evoked excitatory postsynaptic potential decreased when a conditioning stimulation was applied to the ventral funiculus 50-300 ms prior to the stimulation of the ipsilateral dorsal root. A decreased input resistance of the motoneurons during the early part (25-100 ms after the artifact) of the ventral funiculus-evoked postsynaptic potentials could account, at least partly, for the decreased amplitude of the dorsal root-evoked response. However, the duration of the inhibition of the dorsal root-evoked excitatory postsynaptic potential was longer than that of the decrease in input resistance. Ventral funiculus stimulation evoked antidromic discharges in dorsal roots. Recordings of dorsal root potentials showed that these discharges were generated by the underlying afferent terminal depolarizations reaching firing threshold. The dorsal root discharge overlapped with most of the time-course of the ventral funiculus-evoked inhibition of the response to dorsal root stimulation, suggesting that part of this inhibition may be exerted at a presynaptic level. The number of antidromic action potentials evoked in dorsal roots by ventral funiculus stimulation increased significantly in saline solution with chloride concentration reduced to 50% of control. Bursts of action potentials disappeared when chloride was removed completely. Antidromic discharges were therefore due to chloride conductance. The number of action potentials evoked in ventral roots was increased in low-chloride saline solutions. Removing chloride from the bathing solution resulted in an unstable ventral root activity. Bath application of the GABA(A) receptor antagonist, bicuculline (5-10 microM), blocked the ventral funiculus-evoked antidromic discharges in the dorsal roots. The increase in chloride conductance which generated the depolarizations underlying the dorsal root discharges was therefore mediated by an activation of GABA(A) receptors. In contrast, bursts of action potentials in the ventral roots were increased in both amplitude and duration under bicuculline. Our data demonstrate that pathways running in the ventral funiculus of the spinal cord exert a control on interneurons mediating presynaptic inhibition at birth.
Collapse
Affiliation(s)
- L Vinay
- CNRS, UPR Neurobiologie et Mouvements (UPR 9011), Marseille, France
| | | |
Collapse
|
21
|
The modulation of presynaptic inhibition in single muscle primary afferents during fictive locomotion in the cat. J Neurosci 1999. [PMID: 9870968 DOI: 10.1523/jneurosci.19-01-00391.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of this study is to understand the functional organization of presynaptic inhibition in muscle primary afferents during locomotion. Primary afferent depolarization (PAD) associated with presynaptic inhibition was recorded intra-axonally in identified afferents from various hindlimb muscles in L6-L7 spinal segments during fictive locomotion in the decerebrate cat. PADs were evoked by the stimulation of peripheral muscle nerves and were averaged in the different epochs of the fictive step cycle. Fifty-three trials recorded from 39 muscle axons (37 from group I and two from group II) were retained for analysis. The results showed that there was a significant phase-dependent modulation of PAD amplitude (p < 0.05) in a majority of muscle afferents (30 of 39, 77%). However, not all stimulated nerves led to significantly modulated PADs in a given axon (36 of 53 trials, 68%). We also observed that the pattern of modulation (phase for maximum and minimum PAD amplitude and the depth of modulation) varied with each recorded afferent, as well as with each stimulated nerve. We further evaluated the effect of PAD modulation on the phasic transmission of the monosynaptic reflex (MSR) and found that PADs decreased the MSR amplitude in all phases of the fictive step cycle, independent of the PAD pattern in individual group I fibers. We conclude that (1) PAD modulation patterns of all group I fibers contacting motoneurons led to an overall reduction in monosynaptic transmission, and (2) individual PAD patterns could participate in the control of transmission in specific reflex pathways during locomotion.
Collapse
|
22
|
Maisonobe T, Tankéré F, Lamas G, Soudant J, Bouche P, Willer JC, Fournier E. Reflexes elicited from cutaneous and mucosal trigeminal afferents in normal human subjects. Brain Res 1998; 810:220-8. [PMID: 9813339 DOI: 10.1016/s0006-8993(98)00953-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been shown that in patients in whom the central stump of the hypoglossal nerve has been anastomosed to the peripheral stump of a lesioned facial nerve, supraorbital nerve stimulation can elicit a short-latency reflex (12.5+/-0.6 ms; mean+/-S.D.) in facial muscles similar to the R1 disynaptic blink reflex response, but not followed by an R2 blink reflex component46. Thus in addition to replacing the facial neurons at peripheral synapses, these hypoglossal nerves contribute to a trigemino-hypoglossal reflex. The aim of this work was to study the type of reflex activities which can be elicited in both facial and tongue muscles by electrical stimulation of cutaneous (supraorbital nerve) or mucosal (lingual nerve) trigeminal (V) afferents in normal subjects. The results show that although stimulation of cutaneous V1 afferents elicits the well-known double component (R1-R2) blink reflex response in the orbicularis oculi muscles, it does not produce any detectable reflex response in the genioglossus muscle, even during experimental paradigms designed to facilitate the reflex activity. Conversely, stimulation of mucosal V3 afferents can elicit a single reflex response of the R1 type in the genioglossus muscle but not in the orbicularis oculi muscles, even during experimental paradigms designed to facilitate the reflex activity. These data are discussed in terms of two similar but separate circuits for the R1 responses of cutaneous (blink reflex) and mucosal (tongue reflex) origins. They suggest that in patients with hypoglossal-facial (XII-VII) nerve anastomosis, the short-latency trigemino-'hypoglossal-facial' reflex of the R1 blink reflex type observed in facial muscles following supraorbital nerve stimulation could be due to changes in synaptic effectiveness of the central connectivity within the principal trigeminal nucleus where both cutaneous and mucosal trigeminal afferents project.
Collapse
Affiliation(s)
- T Maisonobe
- Federation of Clinical Neurophysiology, Hôpital Pitié-Salpêtrière-47, Bd. de l'Hôpital, 75013, Paris, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Misiaszek JE, Pearson KG. Stretch of quadriceps inhibits the soleus H reflex during locomotion in decerebrate cats. J Neurophysiol 1997; 78:2975-84. [PMID: 9405517 DOI: 10.1152/jn.1997.78.6.2975] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previously, it has been demonstrated that afferent signals from the quadriceps muscles can suppress H reflexes in humans during passive movements of the leg. To establish whether afferent input from quadriceps contributes to the modulation of the soleus H reflex during locomotion, the soleus H reflex was conditioned with stretches of the quadriceps muscle during bouts of spontaneous treadmill locomotion in decerebrate cats. We hypothesized that 1) in the absence of locomotion such conditioning would lead to suppression of the soleus H reflex and 2) this would be retained during periods of locomotor activity. In the absence of locomotion, slow sinusoidal stretches (0.2 Hz, 8 mm) of quadriceps cyclically modulated the amplitude of the soleus H reflex. The H reflex amplitude was least during the lengthening of the quadriceps and greatest as quadriceps shortened. Further, low-amplitude vibrations (48-78 micron) applied to the patellar tendon suppressed the reflex, indicating that the muscle spindle primaries were the receptor eliciting the effect. During bouts of locomotion, ramp stretches of quadriceps were applied during the extensor phase of the locomotor rhythm. Soleus H reflexes sampled at two points during the stance phase were reduced compared with phase-matched controls. The background level of the soleus electromyographic activity was not influenced by the applied stretches to quadriceps, either during locomotion or in the absence of locomotion. This indicates that the excitability of the soleus motoneuron pool was not influenced by the stretching of quadriceps, and that the inhibition of the soleus H reflex is due to presynaptic inhibition. We conclude that group Ia afferent feedback from quadriceps contributes to the regulation of the soleus H reflex during the stance phase of locomotion in decerebrate cats. This afferent mediated source of regulation of the H reflex, or monosynaptic stretch reflex, would allow for rapid alterations in reflex gain according to the dynamic needs of the animal. During early stance, this source of regulation might suppress the soleus stretch reflex to allow adequate yielding at the ankle and facilitate the movement of the body over the foot.
Collapse
Affiliation(s)
- J E Misiaszek
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | | |
Collapse
|
24
|
Bergenheim M, Johansson H, Pedersen J, O¨hberg F, Sjo¨lander P. Ensemble coding of muscle stretches in afferent populations containing different types of muscle afferents. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00642-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Enríquez M, Jiménez I, Rudomin P. Changes in PAD patterns of group I muscle afferents after a peripheral nerve crush. Exp Brain Res 1996; 107:405-20. [PMID: 8821382 DOI: 10.1007/bf00230422] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the anesthetized cat we have analyzed the changes in primary afferent depolarization (PAD) evoked in single muscle spindle and tendon organ afferents at different times after their axons were crushed in the periphery and allowed to regenerate. Medial gastrocnemius (MG) afferents were depolarized by stimulation of group I fibers in the posterior biceps and semitendinosus nerve (PBSt), as soon as 2 weeks after crushing their axons in the periphery, in some cases before they could be activated by physiological stimulation of muscle receptors. Two to twelve weeks after crushing the MG nerve, stimulation of the PBSt produced PAD in all MG fibers reconnected with presumed muscle spindles and tendon organs. The mean amplitude of the PAD elicited in afferent fibers reconnected with muscle spindles was increased relative to values obtained from Ia fibers in intact (control) preparations, but remained essentially the same in fibers reconnected with tendon organs. Quite unexpectedly, we found that, between 2 and 12 weeks after crushing the MG nerve, stimulation of the bulbar reticular formation (RF) produced PAD in most afferent fibers reconnected with muscle spindle afferents. The mean amplitude of the PAD elicited in these fibers was significantly increased relative to the PAD elicited in muscle spindle afferents from intact preparations (from 0.08 +/- 0.4 to 0.47 +/- 0.34 mV). A substantial recovery was observed between 6 months and 2.5 years after the peripheral nerve injury. Stimulation of the sural (SU) nerve produced practically no PAD in muscle spindles from intact preparations, and this remained so in those afferents reconnected with muscle spindles impaled 2-12 weeks after the nerve crush. The mean amplitude of the PAD produced in afferent fibers reconnected with tendon organs by stimulation of the PBSt nerve and of the bulbar RF remained essentially the same as the PAD elicited in intact afferents. However, SU nerve stimulation produced a larger PAD in afferents reconnected with tendon organs 2-12 weeks after the nerve crush (mean PAD changed from 0.05 +/- 0.04 to 0.32 +/- 0.17 mV). The results obtained indicate that the PAD patterns of the afferent fibers reconnected with muscle spindle and tendon organ afferents are changed after crushing their axons in the periphery: stimulation of the bulbar RF appears to produce larger PAD in fibers reconnected with muscle spindles, and stimulation of cutaneous afferents produces larger PAD in fibers reconnected with tendon organs. It is suggested that these alterations in the patterns of PAD of muscle afferents result from central changes in the balance of excitatory and inhibitory influences acting on the segmental pathways mediating the PAD. Although the functional role of these changes has not been established, they may reflect compensatory changes aimed to adjust information arising from damaged afferents.
Collapse
Affiliation(s)
- M Enríquez
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados, México
| | | | | |
Collapse
|