1
|
Shao J, Li Y, Li Z, Xu Z, Xun W, Zhang N, Feng H, Miao Y, Shen Q, Zhang R. Participating mechanism of a major contributing gene ysnE for auxin biosynthesis in Bacillus amyloliquefaciens SQR9. J Basic Microbiol 2021; 61:569-575. [PMID: 33914927 DOI: 10.1002/jobm.202100098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022]
Abstract
The phytohormone indole-3-acetic acid (IAA) has been demonstrated to contribute to the plant growth-promoting effect of rhizobacteria, but the IAA biosynthesis pathway in rhizobacteria remains unclear. The ysnE gene, encoding a putative tryptophan acetyltransferase, has been demonstrated to be involved in and strongly contribute to IAA production in Bacillus, but the mechanism is unknown. In this study, to investigate how ysnE participates in IAA biosynthesis in the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens SQR9, differences in the produced IAA biosynthesis intermediates between wild-type SQR9 and ΔysnE were analyzed and compared, and the effects of different intermediate compounds on the production of IAA and the accumulation of other intermediates were also investigated. The results showed that the mutant ΔysnE produced more indole-3-lactic acid (ILA) and tryptamine (TAM) than the SQR9 wild-type strain (nearly 1.6- and 2.1-fold), while the production of tryptophol (TOL) was significantly decreased by 46%. When indole-3-pyruvic acid (IPA) served as the substrate, the concentration of ILA in the ΔysnE fermentation broth was much higher than that of the wild type, while IAA and TOL were significantly lower, and ΔysnE was lower than SQR9 in IAA and TOL with the addition of TAM. The TOL content in the ΔysnE fermentation broth was much lower than that in the wild-type SQR9 with the addition of ILA. We suggest that ysnE may be involved in the IPA and TAM pathways and play roles in indole acetaldehyde (IAAld) synthesis from IPA and TAM and in the conversion of ILA to TOL.
Collapse
Affiliation(s)
- Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yucong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zunfeng Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Haichao Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Co-Inoculation of Bacillus velezensis Strain S141 and Bradyrhizobium Strains Promotes Nodule Growth and Nitrogen Fixation. Microorganisms 2020; 8:microorganisms8050678. [PMID: 32392716 PMCID: PMC7284691 DOI: 10.3390/microorganisms8050678] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 11/29/2022] Open
Abstract
The objective of this research was to evaluate the PGPR effect on nodulation and nitrogen-fixing efficiency of soybean (Glycine max (L.) Merr.) by co-inoculation with Bradyrhizobiumdiazoefficiens USDA110. Co-inoculation of Bacillusvelezensis S141 with USDA110 into soybean resulted in enhanced nodulation and N2-fixing efficiency by producing larger nodules. To understand the role of S141 on soybean and USDA110 symbiosis, putative genes related to IAA biosynthesis were disrupted, suggesting that co-inoculation of USDA110 with S141ΔyhcX reduces the number of large size nodules. It was revealed that yhcX may play a major role in IAA biosynthesis in S141 as well as provide a major impact on soybean growth promotion. The disruption of genes related to cytokinin biosynthesis and co-inoculation of USDA110 with S141ΔIPI reduced the number of very large size nodules, and it appears that IPI might play an important role in nodule size of soybean–Bradyrhizobium symbiosis. However, it was possible that not only IAA and cytokinin but also some other substances secreted from S141 facilitate Bradyrhizobium to trigger bigger nodule formation, resulting in enhanced N2-fixation. Therefore, the ability of S141 with Bradyrhizobium co-inoculation to enhance soybean N2-fixation strategy could be further developed for supreme soybean inoculants.
Collapse
|
3
|
Yu Z, Yang G, Liu X, Wang Y, Zhuang L, Zhou S. Complete genome sequence of the nitrogen-fixing bacterium Azospirillum humicireducens type strain SgZ-5 T. Stand Genomic Sci 2018; 13:28. [PMID: 30349619 PMCID: PMC6192227 DOI: 10.1186/s40793-018-0322-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 09/24/2018] [Indexed: 12/04/2022] Open
Abstract
The Azospirillum humicireducens strain SgZ-5T, belonging to the Order Rhodospirillales and the Family Rhodospirillaceae, was isolated from a microbial fuel cell inoculated with paddy soil. A previous work has shown that strain SgZ-5T was able to fix atmospheric nitrogen involved in plant growth promotion. Here we present the complete genome of A. humicireducens SgZ-5T, which consists of a circular chromosome and six plasmids with the total genome size of 6,834,379 bp and the average GC content of 67.55%. Genome annotations predicted 5969 protein coding and 85 RNA genes including 14 rRNA and 67 tRNA genes. By genomic analysis, we identified a complete set of genes that is potentially involved in nitrogen fixation and its regulation. This genome also harbors numerous genes that are likely responsible for phytohormones production. We anticipate that the A. humicireducens SgZ-5T genome will contribute insights into plant growth promoting properties of Azospirillum strains.
Collapse
Affiliation(s)
- Zhen Yu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650 China
| | - Guiqin Yang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650 China
| | - Xiaoming Liu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650 China
| | - Yueqiang Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650 China
| | - Li Zhuang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632 China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
4
|
Belbahri L, Chenari Bouket A, Rekik I, Alenezi FN, Vallat A, Luptakova L, Petrovova E, Oszako T, Cherrad S, Vacher S, Rateb ME. Comparative Genomics of Bacillus amyloliquefaciens Strains Reveals a Core Genome with Traits for Habitat Adaptation and a Secondary Metabolites Rich Accessory Genome. Front Microbiol 2017; 8:1438. [PMID: 28824571 PMCID: PMC5541019 DOI: 10.3389/fmicb.2017.01438] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/17/2017] [Indexed: 12/04/2022] Open
Abstract
The Gram positive, non-pathogenic endospore-forming soil inhabiting prokaryote Bacillus amyloliquefaciens is a plant growth-promoting rhizobacterium. Bacillus amyloliquefaciens processes wide biocontrol abilities and numerous strains have been reported to suppress diverse bacterial, fungal and fungal-like pathogens. Knowledge about strain level biocontrol abilities is warranted to translate this knowledge into developing more efficient biocontrol agents and bio-fertilizers. Ever-expanding genome studies of B. amyloliquefaciens are showing tremendous increase in strain-specific new secondary metabolite clusters which play key roles in the suppression of pathogens and plant growth promotion. In this report, we have used genome mining of all sequenced B. amyloliquefaciens genomes to highlight species boundaries, the diverse strategies used by different strains to promote plant growth and the diversity of their secondary metabolites. Genome composition of the targeted strains suggest regions of genomic plasticity that shape the structure and function of these genomes and govern strain adaptation to different niches. Our results indicated that B. amyloliquefaciens: (i) suffer taxonomic imprecision that blurs the debate over inter-strain genome diversity and dynamics, (ii) have diverse strategies to promote plant growth and development, (iii) have an unlocked, yet to be delimited impressive arsenal of secondary metabolites and products, (iv) have large number of so-called orphan gene clusters, i.e., biosynthetic clusters for which the corresponding metabolites are yet unknown, and (v) have a dynamic pan genome with a secondary metabolite rich accessory genome.
Collapse
Affiliation(s)
- Lassaad Belbahri
- Laboratory of Soil Biology, University of NeuchatelNeuchatel, Switzerland.,NextBiotechAgareb, Tunisia
| | - Ali Chenari Bouket
- NextBiotechAgareb, Tunisia.,Graduate School of Life and Environmental Sciences, Osaka Prefecture UniversitySakai, Japan.,Young Researchers and Elite Club, Tabriz Branch, Islamic Azad UniversityTabriz, Iran
| | | | | | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, University of NeuchâtelNeuchâtel, Switzerland
| | - Lenka Luptakova
- NextBiotechAgareb, Tunisia.,Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Medicine and PharmacyKosice, Slovakia
| | - Eva Petrovova
- Institute of Anatomy, University of Veterinary Medicine and PharmacyKosice, Slovakia
| | | | | | | | - Mostafa E Rateb
- School of Science and Sport, University of the West of ScotlandPaisley, United Kingdom
| |
Collapse
|
5
|
Zhu Y, Hua Y, Zhang B, Sun L, Li W, Kong X, Hong J. Metabolic engineering of indole pyruvic acid biosynthesis in Escherichia coli with tdiD. Microb Cell Fact 2017; 16:2. [PMID: 28049530 PMCID: PMC5209907 DOI: 10.1186/s12934-016-0620-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/20/2016] [Indexed: 12/05/2022] Open
Abstract
Background Indole pyruvic acid (IPA) is a versatile platform intermediate and building block for a number of high-value products in the pharmaceutical and food industries. It also has a wide range of applications, such as drugs for the nervous system, cosmetics, and luminophores. Chemical synthesis of IPA is a complicated and costly process. Moreover, through the biosynthesis route employing l-amino acid oxidase, the byproduct hydrogen peroxide leads the degradation of IPA. TdiD, identified as a specific tryptophan aminotransferase, could be an alternative solution for efficient IPA biosynthesis. Results Escherichia coli strain W3110, which demonstrates basic production when supplied with tryptophan, was engineered for IPA biosynthesis. Several strategies were implemented to improve IPA production. First, through incorporating the codon-optimized tdiD into W3110, IPA levels increased from 41.54 ± 1.26 to 52.54 ± 2.08 mg/L. Second, after verifying the benefit of an increased phenylpyruvate pool, a YL03 strain was constructed based on a previously reported mutant strain of W3110 with a plasmid carrying aroFfbr and pheAfbr to further improve IPA production. The recombinant YL03 strain accumulated IPA at 158.85 ± 5.36 mg/L, which was 3.82-fold higher than that of the wild-type W3110 strain. Third, optimization of tdiDco expression was carried out by replacing the Trc promoter with a series of constitutively active promoters along with increasing the plasmid copy numbers. The highest IPA production was observed in YL08, which achieved 236.42 ± 17.66 mg/L and represented a greater than 5-fold increase as compared to W3110. Finally, the effects of deletion and overexpression of tnaA on IPA biosynthesis were evaluated. The removal of tnaA led to slightly reduced IPA levels, whereas the overexpression of tnaA resulted in a considerable decline in production. Conclusions This study illustrates the feasibility of IPA biosynthesis in E. coli through tdiD. An efficient IPA producing strain, YL08, was developed, which provides a new possibility for biosynthesis of IPA. Although the final production was limited, this study demonstrates a convenient method of IPA synthesis. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0620-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yelin Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Yan Hua
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Biao Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Lianhong Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Wenjie Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Xin Kong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China.
| |
Collapse
|
6
|
Ramírez-Mata A, López-Lara LI, Xiqui-Vázquez ML, Jijón-Moreno S, Romero-Osorio A, Baca BE. The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofilm formation and exopolysaccharide production in Azospirillum brasilense. Res Microbiol 2015; 167:190-201. [PMID: 26708984 DOI: 10.1016/j.resmic.2015.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022]
Abstract
In bacteria, proteins containing GGDEF domains are involved in production of the second messenger c-di-GMP. Here we report that the cdgA gene encoding diguanylate cyclase A (CdgA) is involved in biofilm formation and exopolysaccharide (EPS) production in Azospirillum brasilense Sp7. Biofilm quantification using crystal violet staining revealed that inactivation of cdgA decreased biofilm formation. In addition, confocal laser scanning microscopy analysis of green-fluorescent protein-labeled bacteria showed that, during static growth, the biofilms had differential levels of development: bacteria harboring a cdgA mutation exhibited biofilms with considerably reduced thickness compared with those of the wild-type Sp7 strain. Moreover, DNA-specific staining and treatment with DNase I, and epifluorescence studies demonstrated that extracellular DNA and EPS are components of the biofilm matrix in Azospirillum. After expression and purification of the CdgA protein, diguanylate cyclase activity was detected. The enzymatic activity of CdgA-producing cyclic c-di-GMP was determined using GTP as a substrate and flavin adenine dinucleotide (FAD(+)) and Mg(2)(+) as cofactors. Together, our results revealed that A. brasilense possesses a functional c-di-GMP biosynthesis pathway.
Collapse
Affiliation(s)
- Alberto Ramírez-Mata
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| | - Lilia I López-Lara
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| | - Ma Luisa Xiqui-Vázquez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| | - Saúl Jijón-Moreno
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| | - Angelica Romero-Osorio
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| | - Beatriz E Baca
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| |
Collapse
|
7
|
Shao J, Li S, Zhang N, Cui X, Zhou X, Zhang G, Shen Q, Zhang R. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microb Cell Fact 2015; 14:130. [PMID: 26337367 PMCID: PMC4558970 DOI: 10.1186/s12934-015-0323-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/21/2015] [Indexed: 11/10/2022] Open
Abstract
Background The plant growth-promoting rhizobacteria (PGPR) strain Bacillus amyloliquefaciens SQR9, isolated from the cucumber rhizosphere, protects the host plant from pathogen invasion and promotes plant growth through efficient root colonization. The phytohormone indole-3-acetic acid (IAA) has been suggested to contribute to the plant-growth-promoting effect of Bacillus strains. The possible IAA synthetic pathways in B. amyloliquefaciens SQR9 were investigated in this study, using a combination of chemical and genetic analysis. Results Gene candidates involved in tryptophan-dependent IAA synthesis were identified through tryptophan response transcriptional analysis, and inactivation of genes ysnE, dhaS, yclC, and yhcX in SQR9 led to 86, 77, 55, and 24 % reductions of the IAA production, respectively. The genes patB (encoding a conserved hypothetical protein predicted to be an aminotransferase), yclC (encoding a UbiD family decarboxylase), and dhaS (encoding indole 3-acetaldehyde dehydrogenase), which were proposed to constitute the indole-3-pyruvic acid (IPyA) pathway for IAA biosynthesis, were separately expressed in SQR9 or co-expressed as an entire IAA synthesis pathway cluster in SQR9 and B. subtilis 168, all these recombinants showed increased IAA production. These results suggested that gene products of dhaS, patB, yclB, yclC, yhcX and ysnE were involved in IAA biosynthesis. Genes patB, yclC and dhaS constitute a potential complete IPyA pathway of IAA biosynthesis in SQR9. Conclusions In conclusion, biosynthesis of IAA in B. amyloliquefaciens SQR9 occurs through multiple pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0323-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiahui Shao
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China. .,Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Shuqing Li
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Nan Zhang
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Xiaoshuang Cui
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Xuan Zhou
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Guishan Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Qirong Shen
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China. .,Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
8
|
Masciarelli O, Urbani L, Reinoso H, Luna V. Alternative mechanism for the evaluation of indole-3-acetic acid (IAA) production by Azospirillum brasilense strains and its effects on the germination and growth of maize seedlings. J Microbiol 2013; 51:590-7. [PMID: 24037658 DOI: 10.1007/s12275-013-3136-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/24/2013] [Indexed: 11/26/2022]
Abstract
We evaluated the production of indole-3-acetic acid (IAA) by Azospirillum brasilense strains in vitro (cell culture supernatants) and in vivo (stems and roots of maize seedlings) to clarify the role of this phytohormone as a signaling and effector molecule in the symbiotic interaction between maize and A. brasilense. The three strains all showed IAA production when cultured in NFb medium supplemented with 100 μg/ml L-tryptophan. The level of IAA production was 41.5 μg/ml for Yu62, 12.9 μg/ml for Az39, and 0.15 μg/ml for ipdC-. The release of IAA into culture medium by the bacteria appeared to be the main activator of the early growth promotion observed in the inoculated maize seedlings. The application of supernatants with different IAA contents caused significant differences in the seedling growth. This observation provides the basis for novel technological tools for effective quality control procedures on inoculants. The approach described can be incorporated into different inoculation methods, including line sowing, downspout, and foliar techniques, and increase the sustainability of symbiotic plant-bacteria systems.
Collapse
Affiliation(s)
- Oscar Masciarelli
- Laboratorio de Fisiología Vegetal, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Argentina
| | | | | | | |
Collapse
|
9
|
He P, Hao K, Blom J, Rückert C, Vater J, Mao Z, Wu Y, Hou M, He P, He Y, Borriss R. Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp. plantarum B9601-Y2 and expression of mersacidin and other secondary metabolites. J Biotechnol 2013; 164:281-91. [PMID: 23357245 DOI: 10.1016/j.jbiotec.2012.12.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/21/2012] [Accepted: 12/22/2012] [Indexed: 11/29/2022]
Abstract
The plant-associated Bacillus amyloliquefaciens subsp. plantarum strain B9601-Y2, isolated from wheat rhizosphere, is a powerful plant growth-promoting rhizobacterium. Its relative large genome size of 4.24Mbp, exceeding that of other representatives of the B. amyloliquefaciens subsp. plantarum taxon, is mainly due to the presence of 18 DNA-islands containing remnants of phages, a unique restriction modification system, a gene cluster for mersacidin synthesis, and an orphan gene cluster devoted to non-ribosomal synthesis of an unidentified peptide. Like other members of the taxon, the Y2 genome contains giant gene clusters for non-ribosomal synthesis of the polyketides macrolactin, difficidin, and bacillaene, the antifungal lipopeptides bacillomycin D, and fengycin, the siderophore bacillibactin, and the dipeptide bacilysin. A gene cluster encoding enzymes for a degradative pathway with 2-keto-3-deoxygluconate and 2-keto-3-deoxy-phosphogluconate as intermediates was explored by genome mining and found as being a unique feature for representatives of the plantarum subspecies. A survey of the Y2 genome against other B. amyloliquefaciens genomes revealed 130 genes only occurring in subsp. plantarum but not in subsp. amyloliquefaciens. Notably, the surfactin gene cluster is not functional due to a large deletion removing parts of the Srf synthetases B and C. Expression of polyketides, lipopeptides, mersacidin, and of the growth hormone indole-3-acetic acid in Y2 was demonstrated by matrix-assisted laser desorption ionization-time of flight mass spectroscopy and high-performance liquid chromatography, respectively.
Collapse
Affiliation(s)
- Pengfei He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Glickmann E, Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 2010; 61:793-6. [PMID: 16534942 PMCID: PMC1388360 DOI: 10.1128/aem.61.2.793-796.1995] [Citation(s) in RCA: 536] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the sensitivity and the specificity of three versions of the Salkowski colorimetric technique. Two of these allowed the detection of indoleacetic acid (IAA) over a low range of concentrations (0.5 to 20 (mu)g/ml), while the third permitted the detection of IAA over a range of higher concentrations (5 to 200 (mu)g/ml). Overall, the three formulations reacted not only with auxin (IAA) but also with indolepyruvic acid and indoleacetamide. Therefore, these techniques appear to be specific for IAA, indolepyruvic acid, and indoleacetamide rather than for IAA alone.
Collapse
|
11
|
De-Bashan LE, Antoun H, Bashan Y. INVOLVEMENT OF INDOLE-3-ACETIC ACID PRODUCED BY THE GROWTH-PROMOTING BACTERIUM AZOSPIRILLUM SPP. IN PROMOTING GROWTH OF CHLORELLA VULGARIS(1). JOURNAL OF PHYCOLOGY 2008; 44:938-47. [PMID: 27041612 DOI: 10.1111/j.1529-8817.2008.00533.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Involvement of indole-3-acetic acid (IAA), produced by the microalgae-growth-promoting bacteria Azospirillum brasilens and A. lipoferum, in promoting growth of the microalga Chlorella vulgaris Beij. was studied. Four wildtype strains of Azospirillum and their IAA-deficient mutants were co-immobilized with C. vulgaris in alginate beads. Cultures were grown in synthetic growth medium supplemented with tryptophan. Growth promotion of microalgae and production of exogenous IAA by Azospirillum spp. were monitored. All wildtype Azospirillum spp. produced significant but varying amounts of IAA, while their mutant forms produced significantly less. The results demonstrated a significant growth promotion in Chlorella cultures when immobilized with the four wildtype strains of Azospirillum, while very low or no enhanced growth was induced by the four IAA-deficient mutants, compared to when C. vulgaris is immobilized alone. A complementation experiment, where an IAA-attenuated mutant (A. brasilense SpM7918) was supplemented with IAA produced by its parental wildtype strain (A. brasilense Sp6), restored growth promotion in the microalgae-mutant culture.
Collapse
Affiliation(s)
- Luz E De-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, B.C.S. 23090, Mexico Départment des Sols et de Génie Agroalimentaire, Université Laval, Québec City, Québec, Canada Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, Arizona, USADépartment des Sols et de Génie Agroalimentaire, Université Laval, Québec City, Québec, Canada Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, B.C.S. 23090, Mexico Départment des Sols et de Génie Agroalimentaire, Université Laval, Québec City, Québec, Canada Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, Arizona, USA
| | - Hani Antoun
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, B.C.S. 23090, Mexico Départment des Sols et de Génie Agroalimentaire, Université Laval, Québec City, Québec, Canada Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, Arizona, USADépartment des Sols et de Génie Agroalimentaire, Université Laval, Québec City, Québec, Canada Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, B.C.S. 23090, Mexico Départment des Sols et de Génie Agroalimentaire, Université Laval, Québec City, Québec, Canada Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, Arizona, USA
| | - Yoav Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, B.C.S. 23090, Mexico Départment des Sols et de Génie Agroalimentaire, Université Laval, Québec City, Québec, Canada Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, Arizona, USADépartment des Sols et de Génie Agroalimentaire, Université Laval, Québec City, Québec, Canada Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, B.C.S. 23090, Mexico Départment des Sols et de Génie Agroalimentaire, Université Laval, Québec City, Québec, Canada Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
12
|
Malhotra M, Srivastava S. An ipdC gene knock-out of Azospirillum brasilense strain SM and its implications on indole-3-acetic acid biosynthesis and plant growth promotion. Antonie van Leeuwenhoek 2007; 93:425-33. [PMID: 17952626 DOI: 10.1007/s10482-007-9207-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
Abstract
The indole-3-pyruvate decarboxylase gene (ipdC), coding for a key enzyme of the indole-3-pyruvic acid pathway of IAA biosynthesis in Azospirillum brasilense SM was functionally disrupted in a site-specific manner. This disruption was brought about by group II intron-based Targetron gene knock-out system as other conventional methods were unsuccessful in generating an IAA-attenuated mutant. Intron insertion was targeted to position 568 on the sense strand of ipdC, resulting in the knock-out strain, SMIT568s10 which showed a significant (~50%) decrease in the levels of indole-3-acetic acid, indole-3-acetaldehyde and tryptophol compared to the wild type strain SM. In addition, a significant decrease in indole-3-pyruvate decarboxylase enzyme activity by approximately 50% was identified confirming a functional knock-out. Consequently, a reduction in the plant growth promoting response of strain SMIT568s10 was observed in terms of root length and lateral root proliferation as well as the total dry weight of the treated plants. Residual indole-3-pyruvate decarboxylase enzyme activity, and indole-3-acetic acid, tryptophol and indole-3-acetaldehyde formed along with the plant growth promoting response by strain SMIT568s10 in comparison with an untreated set suggest the presence of more than one copy of ipdC in the A. brasilense SM genome.
Collapse
Affiliation(s)
- Mandira Malhotra
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
13
|
Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R. Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 2007; 25:1007-14. [PMID: 17704766 DOI: 10.1038/nbt1325] [Citation(s) in RCA: 514] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/09/2007] [Indexed: 11/09/2022]
Abstract
Bacillus amyloliquefaciens FZB42 is a Gram-positive, plant-associated bacterium, which stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. Its 3,918-kb genome, containing an estimated 3,693 protein-coding sequences, lacks extended phage insertions, which occur ubiquitously in the closely related Bacillus subtilis 168 genome. The B. amyloliquefaciens FZB42 genome reveals an unexpected potential to produce secondary metabolites, including the polyketides bacillaene and difficidin. More than 8.5% of the genome is devoted to synthesizing antibiotics and siderophores by pathways not involving ribosomes. Besides five gene clusters, known from B. subtilis to mediate nonribosomal synthesis of secondary metabolites, we identified four giant gene clusters absent in B. subtilis 168. The pks2 gene cluster encodes the components to synthesize the macrolactin core skeleton.
Collapse
Affiliation(s)
- Xiao Hua Chen
- Bakteriengenetik, Institut für Biologie, Humboldt Universität, Chausseestrasse 117, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Idris EE, Iglesias DJ, Talon M, Borriss R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:619-26. [PMID: 17555270 DOI: 10.1094/mpmi-20-6-0619] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Phytohormone-like acting compounds previously have been suggested to be involved in the phytostimulatory action exerted by the plant-beneficial rhizobacterium Bacillus amyloliquefaciens FZB42. Analyses by high-performance liquid chromatography and gas chromatography-mass spectrometry performed with culture filtrates of FZB42 demonstrated the presence of indole-3-acetic acid (IAA), corroborating it as one of the pivotal plant-growth-promoting substances produced by this bacterium. In the presence of 5 mM tryptophan, a fivefold increase in IAA secretion was registered. In addition, in the trp auxotrophic strains E101 (deltatrpBA) and E102 (deltatrpED), and in two other strains bearing knockout mutations in genes probably involved in IAA metabolism, E103 (deltaysnE, putative IAA transacetylase) and E105 (deltayhcX, putative nitrilase), the concentration of IAA in the culture filtrates was diminished. Three of these mutant strains were less efficient in promoting plant growth, indicating that the Trp-dependent synthesis of auxins and plant growth promotion are functionally related in B. amyloliquefaciens.
Collapse
Affiliation(s)
- ElSorra E Idris
- Humboldt Universität Berlin, Institut für Biologie, Berlin, Germany
| | | | | | | |
Collapse
|
15
|
Ge SM, Xie BE, Chen SF. Characterization of two trpE genes encoding anthranilate synthase alpha-subunit in Azospirillum brasilense. Biochem Biophys Res Commun 2006; 341:494-9. [PMID: 16430864 DOI: 10.1016/j.bbrc.2006.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
The previous report from our laboratory has recently identified a new trpE gene (termed trpE2) which exists independently in Azospirillum brasilense Yu62. In this study, amplification of trpE(G) (termed trpE1(G) here) confirmed that there are two copies of trpE gene, one trpE being fused into trpG while the other trpE existed independently. This is the first report to suggest that two copies of the trpE gene exist in this bacterium. Comparison of the nucleotide sequence demonstrated that putative leader peptide, terminator, and anti-terminator were found upstream of trpE1(G) while these sequence features did not exist in front of trpE2. The beta-galactosidase activity of an A. brasilense strain carrying a trpE2-lacZ fusion remained constant at different tryptophan concentrations, but the beta-galactosidase activity of the same strain carrying a trpE1(G)-lacZ fusion decreased as the tryptophan concentration increased. These data suggest that the expression of trpE1(G) is regulated at the transcriptional level by attenuation while trpE2 is constantly expressed. The anthranilate synthase assays with trpE1(G)- and trpE2- mutants demonstrated that TrpE1(G) fusion protein is feedback inhibited by tryptophan while TrpE2 protein is not. We also found that both trpE1(G) and trpE2 gene products were involved in IAA synthesis.
Collapse
Affiliation(s)
- Shi-Mei Ge
- College of Biological Sciences and National Key Laboratory for Agrobiotechnology, Key Laboratory of Agro-Microbial and Application, China Agricultural University, Beijing 100094, PR China
| | | | | |
Collapse
|
16
|
Xie B, Xu K, Zhao HX, Chen SF. Isolation of transposon mutants from Azospirillum brasilense Yu62 and characterization of genes involved in indole-3-acetic acid biosynthesis. FEMS Microbiol Lett 2005; 248:57-63. [PMID: 15961260 DOI: 10.1016/j.femsle.2005.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 04/15/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022] Open
Abstract
The molecular genetics of indole-3-acetic (IAA) synthesis and regulation in Azospirillum brasilense was investigated in this study. Tn5 mutagenesis was performed and five mutants with decreased IAA production were isolated. Five Tn5-inserted genes from these mutants were cloned and sequenced. Four genes were reported for the first time to be involved in IAA production, namely, atrA, ftsA, omaA and aldA that code for GntR-family transcriptional regulator, iron-binding protein component of ABC-type Fe(3+) transport system, outer membrane protein, and aldehyde dehydrogenase, respectively. In addition, two genes atrB and atrC, with predicted proteins that showed high homology to aminotransferases, were cloned from the downstream of atrA in this bacterium. Studies also showed that complementation of atrA, ftsA and omaA were able to restore the IAA production of the corresponding IAA(-) mutants. Comparison of Fe(3+) concentrations in culture supernatants of the wild-type strain, the ftsA mutant and the complemented strain revealed that the iron-uptake ability of the ftsA mutant was highly reduced. This result also points to the necessity of iron as a metal ion in IAA synthesis. Statistical analysis showed no significant difference in the IAA accumulated in cells between the omaA mutant and the wild-type strain, suggesting the omaA might not affect IAA secretion but be involved in IAA production in other unknown ways.
Collapse
Affiliation(s)
- Baoen Xie
- National Key Laboratory for Agrobiotechnology, Key Laboratory of Agro-Microbial and Application and College of Biological Sciences, China Agricultural University, Beijing 100094, PR China
| | | | | | | |
Collapse
|
17
|
Perrine FM, Rolfe BG, Hynes MF, Hocart CH. Gas chromatography-mass spectrometry analysis of indoleacetic acid and tryptophan following aqueous chloroformate derivatisation of Rhizobium exudates. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:723-9. [PMID: 15474378 DOI: 10.1016/j.plaphy.2004.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 07/21/2004] [Indexed: 04/30/2023]
Abstract
A new method for preparing alkyl esters of indole-3-acetic acid (IAA) in aqueous solution is adapted from the chloroformate method originally described by Husek for the analysis of amino acids. This method has the significant advantage of avoiding the generation and use of diazomethane, and is done in aqueous solution without the need to dry the sample with concomitant non-specific losses of IAA. The effectiveness of this method is demonstrated by its use in an isotope dilution gas chromatography-mass spectrometry (GC-MS) assay of IAA and L-tryptophan (Trp) in the culture supernatant of a series of Sinorhizobium meliloti and Rhizobium leguminosarum bv. trifolii strains that can interact with rice to either enhance or inhibit rice plant growth. We were testing the hypothesis that the rice growth inhibition was related to the biosynthesis of IAA. It was found that S. meliloti and Rhizobium strains produced high amounts of IAA in Trp supplemented BIII minimal medium compared to BIII media. All the strains produced more than the minimum amount of IAA required to inhibit rice growth and thus IAA is not the major inhibitory factor of rice seedling growth from S. meliloti and Rhizobium strains.
Collapse
Affiliation(s)
- Francine M Perrine
- Genomics Interaction Group, Research School of Biological Sciences, GPO Box 475, Canberra, ACT 2601, Australia
| | | | | | | |
Collapse
|
18
|
Dosselaere F, Lambrecht M, Vanderleyden J. Isolation and sequence analysis of the trpBA gene cluster, encoding tryptophan synthase, from Azospirillum brasilense. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 11:287-93. [PMID: 11092742 DOI: 10.3109/10425170009033245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The trpBA gene cluster of Azospirillum brasilense Sp7 was isolated by complementation of an Escherichia coli trpBA mutant. Both genes code for the two subunits of tryptophan synthase, which catalyzes the last step in tryptophan biosynthesis. No structural features indicating transcriptional regulation could be identified. Upstream of the trpBA cluster an open reading frame encoding a putative periplasmic binding protein, involved in amino acid transport, was identified. Analysis of the downstream region of the trpBA cluster revealed the presence of a putative open reading frame encoding a subunit of the acetyl-coenzyme A carboxylase carboxyl transferase complex.
Collapse
Affiliation(s)
- F Dosselaere
- F.A. Janssens Laboratory of Genetics, K. U. Leuven, Heverlee, Belgium
| | | | | |
Collapse
|
19
|
Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 2000; 24:487-506. [PMID: 10978548 DOI: 10.1111/j.1574-6976.2000.tb00552.x] [Citation(s) in RCA: 364] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Azospirillum represents the best characterized genus of plant growth-promoting rhizobacteria. Other free-living diazotrophs repeatedly detected in association with plant roots, include Acetobacter diazotrophicus, Herbaspirillum seropedicae, Azoarcus spp. and Azotobacter. Four aspects of the Azospirillum-plant root interaction are highlighted: natural habitat, plant root interaction, nitrogen fixation and biosynthesis of plant growth hormones. Each of these aspects is dealt with in a comparative way. Azospirilla are predominantly surface-colonizing bacteria, whereas A. diazotrophicus, H. seropedicae and Azoarcus sp. are endophytic diazotrophs. The attachment of Azospirillum cells to plant roots occurs in two steps. The polar flagellum, of which the flagellin was shown to be a glycoprotein, mediates the adsorption step. An as yet unidentified surface polysaccharide is believed to be essential in the subsequent anchoring phase. In Azoarcus sp. the attachment process is mediated by type IV pili. Nitrogen fixation structural genes (nif) are highly conserved among all nitrogen-fixing bacteria, and in all diazotrophic species of the class of proteobacteria examined, the transcriptional activator NifA is required for expression of other nif genes in response to two major environmental signals (oxygen and fixed N). However, the mechanisms involved in this control can vary in different organisms. In Azospirillum brasilense and H. seropedicae (alpha- and beta-subgroup, respectively), NifA is inactive in conditions of excess nitrogen. Activation of NifA upon removal of fixed N seems to involve, either directly or indirectly, the signal transduction protein P(II). The presence of four conserved cysteine residues in the NifA protein might be an indication that NifA is directly sensitive to oxygen. In Azotobacter vinelandii (gamma-subgroup) nifA is cotranscribed with a second gene nifL. The nifL gene product inactivates NifA in response to high oxygen tension and cellular nitrogen-status. NifL was found to be a redox-sensitive flavoprotein. The relief of NifL inhibition on NifA activity, in response to N-limitation, is suggested to involve a P(II)-like protein. Moreover, nitrogenase activity is regulated according to the intracellular nitrogen and O(2) level. In A. brasilense and Azospirillum lipoferum posttranslational control of nitrogenase, in response to ammonium and anaerobiosis, involves ADP-ribosylation of the nitrogenase iron protein, mediated by the enzymes DraT and DraG. At least three pathways for indole-3-acetic acid (IAA) biosynthesis in A. brasilense exist: two Trp-dependent (the indole-3-pyruvic acid and presumably the indole-3-acetamide pathway) and one Trp-independent pathway. The occurrence of an IAA biosynthetic pathway not using Trp (tryptophan) as precursor is highly unusual in bacteria. Nevertheless, the indole-3-pyruvate decarboxylase encoding ipdC gene is crucial in the overall IAA biosynthesis in Azospirillum. A number of genes essential for Trp production have been isolated in A. brasilense, including trpE(G) which codes for anthranilate synthase, the key enzyme in Trp biosynthesis. The relevance of each of these four aspects for plant growth promotion by Azospirillum is discussed.
Collapse
Affiliation(s)
- O Steenhoudt
- F.A. Janssens Laboratory of Genetics, Katholieke Universiteit Leuven, Kard. Mercierlaan 92, B-3001, Heverlee, Belgium
| | | |
Collapse
|
20
|
Faure D, Desair J, Keijers V, Bekri MA, Proost P, Henrissat B, Vanderleyden J. Growth of Azospirillum irakense KBC1 on the aryl beta-glucoside salicin requires either salA or salB. J Bacteriol 1999; 181:3003-9. [PMID: 10321999 PMCID: PMC93753 DOI: 10.1128/jb.181.10.3003-3009.1999] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rhizosphere nitrogen-fixing bacterium Azospirillum irakense KBC1 is able to grow on pectin and beta-glucosides such as cellobiose, arbutin, and salicin. Two adjacent genes, salA and salB, conferring beta-glucosidase activity to Escherichia coli, have been identified in a cosmid library of A. irakense DNA. The SalA and SalB enzymes preferentially hydrolyzed aryl beta-glucosides. A Delta(salA-salB) A. irakense mutant was not able to grow on salicin but could still utilize arbutin, cellobiose, and glucose for growth. This mutant could be complemented by either salA or salB, suggesting functional redundancy of these genes in salicin utilization. In contrast to this functional homology, the SalA and SalB proteins, members of family 3 of the glycosyl hydrolases, show a low degree of amino acid similarity. Unlike SalA, the SalB protein exhibits an atypical truncated C-terminal region. We propose that SalA and SalB are representatives of the AB and AB' subfamilies, respectively, in glycosyl hydrolase family 3. This is the first genetic implication of this beta-glucosidase family in the utilization of beta-glucosides for microbial growth.
Collapse
Affiliation(s)
- D Faure
- F. A. Janssens Laboratory of Genetics, K. U. Leuven, B-3001 Heverlee, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
21
|
Costacurta A, Mazzafera P, Rosato YB. Indole-3-acetic acid biosynthesis byXanthomonas axonopodispv. citri is increased in the presence of plant leaf extracts. FEMS Microbiol Lett 1998. [DOI: 10.1111/j.1574-6968.1998.tb12863.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
22
|
Schwarz T, Uthoff K, Klinger C, Meyer HE, Bartholmes P, Kaufmann M. Multifunctional tryptophan-synthesizing enzyme. The molecular weight of the Euglena gracilis protein is unexpectedly low. J Biol Chem 1997; 272:10616-23. [PMID: 9099709 DOI: 10.1074/jbc.272.16.10616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
After developing a suitable procedure to produce large amounts of Euglena gracilis as well as a reliable protocol to purify the multifunctional tryptophan-synthesizing enzyme derived from it (Schwarz, T., Bartholmes, P., and Kaufmann, M. (1995) Biotechnol. Appl. Biochem. 22, 179-190), we here describe structural and catalytic properties of the multifunctional tryptophan-synthesizing enzyme. The kinetic parameters kcat of all five activities and Km for the main substrates were determined. The relative molecular weight under denaturing conditions as judged by SDS-polyacrylamide gel electrophoresis is 136,000. Cross-linking as well as gel filtration experiments revealed that the enzyme exists as a homodimer. Neither intersubunit disulfide linkages nor glycosylations were detected. On the other hand, the polypeptide chains are blocked N-terminally. Complete tryptic digestion of the protomer, high pressure liquid chromatography separation of the resulting peptides, and N-terminal sequence analysis of homogenous peaks as judged by matrix-assisted laser/desorption ionization time-of-flight mass spectrometry was performed. Depending on the sequenced peptides, alignments to all entries of the SwissProt data base resulted in both strong sequence homologies to known Trp sequences and no similarities at all. Proteolytic digestion under native conditions using endoproteinase Glu-C uncovered one major cleavage site yielding a semistable, N-terminally blocked fragment with a molecular weight of 119,000. In addition, an increase in beta-elimination accompanied by a decrease in beta-replacement activity of the beta-reaction during proteolysis was observed.
Collapse
Affiliation(s)
- T Schwarz
- Institut für Biochemie, Universität Witten, Herdecke, Stockumer Str. 10, 58453 Witten, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Kuykendall LD, Hunter WJ. The sequence of a symbiotically essential Bradyrhizobium japonicum operon consisting of trpD, trpC and a moaC-like gene. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1350:277-81. [PMID: 9061023 DOI: 10.1016/s0167-4781(96)00237-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 2767 bp BamHI-HindIII fragment specifying the trpDC genes of B. japonicum I-110 was sequenced. The trpD and trpC genes each have three highly conserved 'Crawford' consensus sequences and are part of an operon with three open reading frames (ORFs). The third ORF has a predicted product with 58% amino-acid sequence identity with the gene product of E. coli moaC, a gene encoding an enzyme involved in biosynthesis of the molybdenum cofactor required for the activity of nitrate reductase and other Mo cofactor-requiring enzymes.
Collapse
Affiliation(s)
- L D Kuykendall
- USDA-ARS, Soybean and Alfalfa Research Laboratory, Beltsville, MD 20705, USA.
| | | |
Collapse
|
24
|
Lehman A, Black R, Ecker JR. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 1996; 85:183-94. [PMID: 8612271 DOI: 10.1016/s0092-8674(00)81095-8] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bending in plant tissues results from differential cell elongation. We have characterized Arabidopsis "hookless" mutants that are defective in differential growth in the hypocotyl. HOOKLESS1 was cloned and its predicted protein shows similarity to a diverse group of N-acetyltransferases. HOOKLESS1 mRNA is increased by treatment with ethylene and decreased in the ethylene-insensitive mutant ein2. High level expression of HOOKLESS1 mRNA results in constitutive hook curvature. The morphology of the hookless hypocotyl is phenocopied by inhibitors of auxin transport or by high levels of endogenous or exogenous auxin. Spatial patterns of expression of two immediate early auxin-responsive genes are altered in hookless1 mutants, suggesting that the ethylene response gene HOOKLESS1 controls differential cell growth by regulating auxin activity.
Collapse
Affiliation(s)
- A Lehman
- Department of Biology, University of Pennsylvania, Philadelphia, USA
| | | | | |
Collapse
|
25
|
Sakanyan V, Petrosyan P, Lecocq M, Boyen A, Legrain C, Demarez M, Hallet JN, Glansdorff N. Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 1):99-108. [PMID: 8581175 DOI: 10.1099/13500872-142-1-99] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A cluster of arginine biosynthetic genes of Corynebacterium glutamicum ATCC 13032, comprising argJ, argB and argD as well as part of argC and argF, has been cloned by heterologous complementation of an Escherichia coli argE mutant. The gene order has been established as argCJBDF by sequencing the entire 4.4 kb cloned DNA fragment. The C. glutamicum argB gene can be transcribed in E. coli cells from an internal promoter located in the coding part of the preceding argJ gene, whereas transcription of the argJ gene appears vector-dependent. Expression of the corynebacterial argB gene is repressed by arginine in the native host but not in recombinant E. coli cells. Feedback inhibition of the corresponding N-acetylglutamate kinase activity was observed both in cell extracts of C. glutamicum and in recombinant E. coli argB auxotrophic strains. Extracts of E. coli cells carrying cloned corynebacterial DNA display an ornithine acetyltransferase activity (encoded by argJ) which alleviates the acetylornithinase (encoded by argE) deficiency of the enterobacterial host. In contrast to Bacillus stearothermophilus ornithine acetyltransferase which also exhibits acetylglutamate synthase activity, C. glutamicum ornithine acetyltransferase appears monofunctional. ArgA and ArgB proteins from different sources share highly significant similarities. The evolutionary implications of these data are discussed.
Collapse
Affiliation(s)
- Vehary Sakanyan
- Laboratoire de Biotechnologie, Faculté des Sciences et des Techniques, Université de Nantes, 2, rue de la Houssinière, F-44072 Nantes Cedex 03, France
| | - Pavel Petrosyan
- Pharmagen, Knunyants Street 4, Yerevan 375010, Republic of Armenia
| | - Michèle Lecocq
- Laboratoire de Biotechnologie, Faculté des Sciences et des Techniques, Université de Nantes, 2, rue de la Houssinière, F-44072 Nantes Cedex 03, France
| | - Anne Boyen
- Microbiologie, Vrije Universiteit Brussel, Research Institute, CERIA-COOVI
- Microbiologie, Vrije Universiteit Brussel, Vlaams Interuniversitair Instituut voor Biotechnologie
| | - Christiane Legrain
- Microbiologie, Vrije Universiteit Brussel, 1 avenue Emile Gryson, B-1070 Brussels, Belgium
| | - Marc Demarez
- Microbiologie, Vrije Universiteit Brussel, 1 avenue Emile Gryson, B-1070 Brussels, Belgium
| | - Jean-Noël Hallet
- Laboratoire de Biotechnologie, Faculté des Sciences et des Techniques, Université de Nantes, 2, rue de la Houssinière, F-44072 Nantes Cedex 03, France
| | - Nicolas Glansdorff
- Microbiologie, Vrije Universiteit Brussel, 1 avenue Emile Gryson, B-1070 Brussels, Belgium
- Microbiologie, Vrije Universiteit Brussel, Research Institute, CERIA-COOVI
- Microbiologie, Vrije Universiteit Brussel, Vlaams Interuniversitair Instituut voor Biotechnologie
| |
Collapse
|
26
|
Abstract
The plant hormones, auxins and cytokinins, are involved in several stages of plant growth and development such as cell elongation, cell division, tissue differentiation, and apical dominance. The biosynthesis and the underlying mechanism of auxins and cytokinins action are subjects of intense investigation. Not only plants but also microorganisms can synthesize auxins and cytokinins. The role of phytohormone biosynthesis by microorganisms is not fully elucidated: in several cases of pathogenic fungi and bacteria these compounds are involved in pathogenesis on plants; auxin and cytokinin production may also be involved in root growth stimulation by beneficial bacteria and associative symbiosis. The genetic mechanism of auxin biosynthesis and regulation by Pseudomonas, Agrobacterium, Rhizobium, Bradyrhizobium, and Azospirillum, are well studied; in these bacteria several physiological effects have been correlated to the bacterial phytohormones biosynthesis. The pathogenic bacteria Pseudomonas and Agrobacterium produce indole-3-acetic acid via the indole-3-acetamide pathway, for which the genes are plasmid borne. However, they do possess also the indole-3-pyruvic acid pathway, which is chromosomally encoded. In addition, they have genes that can conjugate free auxins or hydrolyze conjugated forms of auxins and cytokinins. In Agrobacterium there are also several genes, located near the auxin and cytokinin biosynthetic genes, that are involved in the regulation of auxins and cytokinins sensibility of the transformed plant tissue. Symbiotic bacteria Rhizobium and Bradyrhizobium synthesize indole-3-acetic acid via indole-3-pyruvic acid; also the genetic determinants for the indole-3-acetamide pathway have been detected, but their activity has not been demonstrated. In the plant growth-promoting bacterium Azospirillum, as in Agrobacterium and Pseudomonas, both the indole-3-pyruvic acid and the indole-3-acetamide pathways are present, although in Azospirillum the indole-3-pyruvic acid pathway is of major significance. In addition, biochemical evidence for a tryptophan-independent indole-3-acetic acid pathway in Azospirillum has been presented.
Collapse
Affiliation(s)
- A Costacurta
- F.A. Janssens Laboratory of Genetics, KU Leuven, Heverlee, Belgium
| | | |
Collapse
|
27
|
Costacurta A, Keijers V, Vanderleyden J. Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:463-72. [PMID: 8202090 DOI: 10.1007/bf00280477] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Azospirillum brasilense isolated from the rhizosphere of different plants has the ability to excrete indole-3-acetic acid (IAA) into the culture media. Cosmid p0.2, isolated from an A. brasilense Sp245 genome library in pLAFR1, complements the Tn5-induced mutant SpM7918 of A. brasilense Sp6 which excretes reduced amounts of IAA. Restriction mapping and gene expression studies identified a BglII-EcoRI 4.3 kb fragment of p0.2 sufficient for the restoration of high levels of IAA production in mutant SpM7918. Tn5 mutagenesis localized the gene responsible on a 1.8 kb SmaI fragment. Nucleotide sequence analysis revealed that this fragment contains one complete open reading frame. The predicted protein sequence shows extensive homology with the indole-3-pyruvate decarboxylase of Enterobacter cloacae and the pyruvate decarboxylases of Saccharomyces cerevisiae and Zymomonas mobilis. The A. brasilense mutant Sp245a, constructed by homogenotization of a Tn5 insertion derivative of the 1.8 kb SmaI fragment, also displayed reduced IAA production. Introduction of the cloned wild-type gene into Rhizobium meliloti 1021 resulted in increased IAA production. Cell-free extracts prepared from R. meliloti and A. brasilense transconjugants harboring this gene could convert indole-3-pyruvic acid to indole-3-acetaldehyde and tryptophol. These results clearly demonstrate that IAA production in A. brasilense is mediated by indole-3-pyruvate decarboxylase.
Collapse
Affiliation(s)
- A Costacurta
- F.A. Janssens Laboratory of Genetics, Catholic University of Leuven, Heverlee, Belgium
| | | | | |
Collapse
|
28
|
Zimmer W, Hundeshagen B. Identification and sequencing of pyrG, the CTP synthetase gene of Azospirillum brasilense Sp7. FEMS Microbiol Lett 1994; 115:273-7. [PMID: 8138139 DOI: 10.1111/j.1574-6968.1994.tb06650.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
An 18.5-kb DNA fragment carrying the trpGDC cluster of Azospirillum brasilense Sp7 was previously cloned, yielding cosmid pAB1005. Attempts to identify trpA in the vicinity of trpGDC failed but led to the detection of a locus strongly homologous to pyrG, the structural gene for the CTP synthetase. The function of the A. brasilense pyrG gene was verified by complementation of the cytidine-requiring PyrG-deficient mutant JF646 of Escherichia coli. A second open reading frame was identified downstream of pyrG. The deduced amino acid sequence showed homology to dienelactone hydrolases of Pseudomonas and Alcaligenes, enzymes involved in utilization of halogenated aromatic compounds.
Collapse
Affiliation(s)
- W Zimmer
- Botanisches Institut, Universität zu Köln, FRG
| | | |
Collapse
|
29
|
Milcamps A, Keyers V, Vanderleyden J. Identification of a nifW-like gene in Azospirillum brasilense. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1173:237-8. [PMID: 8504172 DOI: 10.1016/0167-4781(93)90188-j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A small ORF, 5' upstream of the fixABC operon in Azospirillum brasilense Sp7, has been identified. Sequence comparison shows significant homology to the Azotobacter vinelandii and Azorhizobium caulinodans nifW gene.
Collapse
Affiliation(s)
- A Milcamps
- F.A. Janssens Laboratory for Genetics, University of Leuven, Heverlee, Belgium
| | | | | |
Collapse
|
30
|
Fani R, Alifano P, Allotta G, Bazzicalupo M, Carlomagno MS, Gallori E, Rivellini F, Polsinelli M. The histidine operon of Azospirillum brasilense: organization, nucleotide sequence and functional analysis. Res Microbiol 1993; 144:187-200. [PMID: 8210676 DOI: 10.1016/0923-2508(93)90044-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A 3457-base pair fragment of Azospirillum brasilense DNA which complemented mutations in the hisA and hisF genes of Escherichia coli was sequenced. The sequence analysis revealed the presence of six major contiguous open reading frames (ORF). The comparison of the predicted amino acid sequence of these ORF with those encoded by the eubacterial, archaebacterial and eukaryotic his genes sequenced thus far revealed that four of them have a significant degree of homology with the E. coli hisH, hisA, hisF and the C-terminal domain of the hisI gene products. S1 mapping experiments indicated that the putative transcription start site coincided with the AUG translational initiation codon of the hisBd gene, the first gene of the A. brasilense his operon. Downstream from the last ORF, a sequence was identified which functions as a Rho-independent transcription terminator. Comparison of amino acid sequences, gene order and organization and evolutionary aspects of the A. brasilense his cluster are discussed.
Collapse
Affiliation(s)
- R Fani
- Dipartimento di Biologia Animale e Genetica, Università degli Studi, Firenze, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Glutamate synthase genes of the diazotroph Azospirillum brasilense. Cloning, sequencing, and analysis of functional domains. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53664-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Vieille C, Elmerich C. Characterization of an Azospirillum brasilense Sp7 gene homologous to Alcaligenes eutrophus phbB and to Rhizobium meliloti nodG. MOLECULAR & GENERAL GENETICS : MGG 1992; 231:375-84. [PMID: 1538694 DOI: 10.1007/bf00292706] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A 4 kb SalI fragment from Azospirillum brasilense Sp7 that shares homology with a 6.8 kb EcoRI fragment carrying nodGEFH and part of nodP of Rhizobium meliloti 41 was cloned in pUC18 to yield pAB503. The nucleotide sequence of a 2 kb SalI-SmaI fragment of the pAB503 insert revealed an open reading frame, named ORF3, encoding a polypeptide sharing 40% identity with R. meliloti NodG. The deduced polypeptide also shared 60% identity with the Alcaligenes eutrophus NADPH-dependent acetoacetyl-CoA (AA-CoA) reductase, encoded by the phbB gene and involved in poly-beta-hydroxybutyrate (PHB) synthesis. Northern blot analysis and promoter extension mapping indicated that ORF3 is expressed as a monocistronic operon from a promoter that resembles the Escherichia coli sigma 70 consensus promoter. An ORF3-lacZ translational fusion was constructed and was very poorly expressed in E. coli, but was functional and constitutively expressed in Azospirillum. Tn5-Mob insertions in ORF3 did not affect growth, nitrogen fixation, PHB synthesis or NAD(P)H-linked AA-CoA reductase activity. An ORF3 DNA sequence was used to probe total DNA of several Azospirillum strains. No ORF3 homologues were found in A. irakense, A. amazonense, A. halopraeferens or in several A. lipoferum strains.
Collapse
Affiliation(s)
- C Vieille
- Département des Biotechnologies, Institut Pasteur, Paris, France
| | | |
Collapse
|
33
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1992; 20:377-86. [PMID: 1741271 PMCID: PMC310391 DOI: 10.1093/nar/20.2.377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|